版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省天门市三校2024届数学高二第二学期期末统考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.小明早上步行从家到学校要经过有红绿灯的两个路口,根据经验,在第一个路口遇到红灯的概率为0.4,在第二个路口遇到红灯的概率为0.5,在两个路口连续遇到红灯的概率是0.2.某天早上小明在第一个路口遇到了红灯,则他在第二个路口也遇到红灯的概率是()A.0.2 B.0.3 C.0.4 D.0.52.在中,,BC边上的高等于,则()A. B. C. D.3.已知,,,,若(、均为正实数),根据以上等式,可推测、的值,则等于()A. B. C. D.4.已知函数的导函数为,且满足关系式,则的值等于()A. B. C. D.5.在中,,若,则A. B. C. D.6.从名学生中选取名组成参观团,若采用下面的方法选取:先用简单随机抽样从人中剔除人,剩下的人再按系统抽样的方法进行.则每人入选的概率()A.不全相等 B.均不相等 C.都相等,且为 D.都相等,且为7.如图,用6种不同的颜色把图中四块区域分开,若相邻区域不能涂同一种颜色,则不同的涂法共有()A.496种 B.480种 C.460种 D.400种8.若离散型随机变量的分布列为则的数学期望()A. B.或 C. D.9.设随机变量X~N(0,1),已知,则()A.0.025 B.0.050C.0.950 D.0.97510.已知函数,,若,则()A. B. C. D.11.用反证法证明命题:若整系数一元二次方程有有理数根,那么、、中至少有一个是偶数时,下列假设中正确的是()A.假设、、都是偶数 B.假设、、都不是偶数C.假设、、至多有一个偶数 D.假设、、至多有两个偶数12.定义1分的地球球心角所对的地球大圆弧长为1海里.在北纬45°圈上有甲、乙两地,甲地位于东经120°,乙位于西经150°,则甲乙两地在球面上的最短距离为()A.5400海里 B.2700海里 C.4800海里 D.3600海里二、填空题:本题共4小题,每小题5分,共20分。13.已知函数是上的增函数,则实数的数值范围为________.14.现有颜色为红、黄、蓝的小球各三个,相同颜色的小球依次编号、、,从中任取个小球,颜色编号均不相同的情况有___________种.15.李华经营了甲、乙两家电动轿车销售连锁店,其月利润(单位:元)分别为,(其中x为销售辆数),若某月两连锁店共销售了110辆,则能获得的最大利润为______元.16.通常,满分为分的试卷,分为及格线,若某次满分为分的测试卷,人参加测试,将这人的卷面分数按照分组后绘制的频率分布直方图如图所示.由于及格人数较少,某位老师准备将每位学生的卷面分采用“开方乘以取整”的方式进行换算以提高及格率(实数的取整等于不超过的最大整数),如:某位学生卷面分,则换算成分作为他的最终考试成绩,则按照这种方式,这次测试的及格率将变为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)旅游业作为一个第三产业,时间性和季节性非常强,每年11月份来临,全国各地就相继进入旅游淡季,很多旅游景区就变得门庭冷落.为改变这种局面,某旅游公司借助一自媒体平台做宣传推广,销售特惠旅游产品.该公司统计了活动刚推出一周内产品的销售数量,用表示活动推出的天数,用表示产品的销售数量(单位:百件),统计数据如下表所示.根据以上数据,绘制了如图所示的散点图,根据已有的函数知识,发现样本点分布在某一条指数型函数的周围.为求出该回归方程,相关人员确定的研究方案是:先用其中5个数据建立关于的回归方程,再用剩下的2组数据进行检验.试回答下列问题:(1)现令,若选取的是这5组数据,已知,,请求出关于的线性回归方程(结果保留一位有效数字);(2)若由回归方程得到的估计数据与选出的检验数据的误差均不超过,则认为得到的回归方程是可靠的,试问(1)中所得的回归方程是否可靠?参考公式及数据:对于一组数据,其回归直线的斜率和截距的最小二乘法估计分别为,;;.18.(12分)在某校教师趣味投篮比赛中,比赛规则是:每场投6个球,至少投进4个球且最后2个球都投进者获奖;否则不获奖.已知教师甲投进每个球的概率都是.(Ⅰ)记教师甲在每场的6次投球中投进球的个数为X,求X的分布列及数学期望;(Ⅱ)求教师甲在一场比赛中获奖的概率.19.(12分)(1)求关于的不等式的解集;(2)若关于的不等式在时恒成立,求实数的取值范围.20.(12分)已知曲线的参数方程(为参数),在同一直角坐标系中,将曲线上的点按坐标变换得到曲线.(1)求曲线的普通方程;(2)若点在曲线上,已知点,求直线倾斜角的取值范围.21.(12分)已知函数在一个周期内的图像经过点和点,且的图像有一条对称轴为.(1)求的解析式及最小正周期;(2)求的单调递增区间.22.(10分)已知函数.(1)若在处取得极值,求的单调递减区间;(2)若在区间内有极大值和极小值,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
根据条件概率,即可求得在第一个路口遇到红灯,在第二个路口也遇到红灯的概率.【题目详解】记“小明在第一个路口遇到红灯”为事件,“小明在第二个路口遇到红灯”为事件“小明在第一个路口遇到了红灯,在第二个路口也遇到红灯”为事件则,,故选D.【题目点拨】本题考查了条件概率的简单应用,属于基础题.2、C【解题分析】试题分析:设,故选C.考点:解三角形.3、B【解题分析】
根据前面几个等式归纳出一个关于的等式,再令可得出和的值,由此可计算出的值.【题目详解】,,,由上可归纳出,当时,则有,,,因此,,故选B.【题目点拨】本题考查归纳推理,解题时要根据前几个等式或不等式的结构进行归纳,考查推理能力,属于中等题.4、D【解题分析】
求得函数的导数,然后令,求得的值.【题目详解】依题意,令得,,故选D.【题目点拨】本小题在导数运算,考查运算求解能力,属于基础题.5、A【解题分析】
根据平面向量的线性运算法则,用、表示出即可.【题目详解】即:本题正确选项:【题目点拨】本题考查平面向量的加法、减法和数乘运算,属于基础题.6、C【解题分析】
按系统抽样的概念知应选C,可分两步:一是从2018人中剔除18留下的概率是,第二步从2000人中选50人选中的概率是,两者相乘即得.【题目详解】从2018人中剔除18人每一个留下的概率是,再从2000人中选50人被选中的概率是,∴每人入选的概率是.故选C.【题目点拨】本题考查随机抽样的事件与概率,在这种抽样机制中,每个个体都是无差别的个体,被抽取的概率都相等.7、B【解题分析】分析:本题是一个分类计数问题,只用三种颜色涂色时,有C63C31C21,用四种颜色涂色时,有C64C41C31A22种结果,根据分类计数原理得到结果.详解:由题意知本题是一个分类计数问题,只用三种颜色涂色时,有C63C31C21=120(种).用四种颜色涂色时,有C64C41C31A22=360(种).综上得不同的涂法共有480种.故选:C.点睛:本题考查分类计数问题,本题解题的关键是看出给图形涂色只有两种不同的情况,颜色的选择和颜色的排列比较简单.8、C【解题分析】
由离散型随机变量的分布列,列出方程组,能求出实数,由此能求出的数学期望.【题目详解】解:由离散型随机变量的分布列,知:
,解得,
∴的数学期望.
故选:C.【题目点拨】本题考查离散型随机变量的数学期望的求法,考查离散型随机变量的分布列等基础知识,是基础题.9、C【解题分析】本题考查服从标准正态分布的随机变量的概率计算.,选C.10、A【解题分析】分析:先求出g(1)=a﹣1,再代入f[g(1)]=1,得到|a﹣1|=0,问题得以解决.详解:∵f(x)=5|x|,g(x)=ax2﹣x(a∈R),f[g(1)]=1,∴g(1)=a﹣1,∴f[g(1)]=f(a﹣1)=5|a﹣1|=1=50,∴|a﹣1|=0,∴a=1,故答案为:A.点睛:本题主要考查了指数的性质,和函数值的求出,属于基础题.11、B【解题分析】分析:本题考查反证法的概念,逻辑用语,否命题与命题的否定的概念,逻辑词语的否定.根据反证法的步骤,假设是对原命题结论的否定,故只须对“b、c中至少有一个偶数”写出否定即可.解答:解:根据反证法的步骤,假设是对原命题结论的否定“至少有一个”的否定“都不是”.即假设正确的是:假设a、b、c都不是偶数故选B.点评:一些正面词语的否定:“是”的否定:“不是”;“能”的否定:“不能”;“都是”的否定:“不都是”;“至多有一个”的否定:“至少有两个”;“至少有一个”的否定:“一个也没有”;“是至多有n个”的否定:“至少有n+1个”;“任意的”的否定:“某个”;“任意两个”的否定:“某两个”;“所有的”的否定:“某些”.12、D【解题分析】
求出甲乙两地的球心角,根据比例关系即可得出答案。【题目详解】地球表面上从甲地(北纬45°东经120°)到乙地(北纬45°西经150°),乙两地对应的AB的纬圆半径是,经度差纬90°,所以AB=R,球心角为60°,最短距离为【题目点拨】求出甲乙两地的球心角,根据比例关系即可得出答案。二、填空题:本题共4小题,每小题5分,共20分。13、.【解题分析】
根据在上的单调性列不等式组,解不等式组求得的取值范围.【题目详解】依题意可知且,所以.由于在上递增,所以即,解得.故答案为:【题目点拨】本小题主要考查根据分段函数单调性求参数的取值范围,属于中档题.14、【解题分析】
设红色的三个球分别为、、,黄色的三个球分别为、、,蓝色的三个球分别为、、,列出所有符合条件的选法组合,可得出结果.【题目详解】设红色的三个球分别为、、,黄色的三个球分别为、、,蓝色的三个球分别为、、,现从中任取个小球,颜色编号均不相同的情况有:、、、、、,因此,从中任取个小球,颜色编号均不相同的情况有种,故答案为.【题目点拨】本题考查分类计数原理的应用,在求解排列组合问题时,若符合条件的基本事件数较少时,可采用列举法求解,考查分类讨论数学思想,属于中等题.15、33000【解题分析】
设其中一家连锁店销售辆,则另一家销售辆,再列出总利润的表达式,是一个关于的二次函数,再利用二次函数的性质求出它的最大值即可.【题目详解】依题意,可设甲这一家销售了辆电动车,则乙这家销售了辆电动车,总总利润,所以,当时,取得最大值,且,故答案为.【题目点拨】本题考查函数模型的选择与应用,考查二次函数最值等基础知识,解题的关键在于确定函数的解析式,考查学生的应用能力,属于中等题.16、.【解题分析】
通过题设中的频率分布直方图可计算不进行换算前分以上(含分)的学生的频率,此频率就是换算后的及格率.【题目详解】先考虑不进行换算前分以上(含分)的学生的频率,该频率为,换算后,原来分以上(含分)的学生都算及格,故这次测试的及格率将变为.【题目点拨】本题考查频率分布直方图的应用,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析【解题分析】
(1)在等式两边取自然对数,得,即,计算出与,将数据代入公式,计算出和,再代入回归方程可得出答案;(2)将和的值代入指数型回归函数,并将和代入,计算估计值与实际值之差的绝对值,看是否都小于,从而确定(1)中所得的回归方程是否可靠。【题目详解】(1)由已知,又令,故有.又,因为,,所以,,所以.(2)由(1)可知,当时,,与检验数据的误差为,不超过;当时,,与检验数据的误差为,不超过.故可以认为得到的回归方程是可靠的.【题目点拨】本题考查非线性回归分析,求非线性回归问题,通常要结合题中的变形,将非线性回归问题转化为线性回归问题求解,考查计算能力,属于中等题。18、(Ⅰ)X的分布列X
0
1
2
3
4
5
6
P
数学期望;(Ⅱ).【解题分析】
试题分析:(Ⅰ)先定出X的所有可能取值,易知本题是6个独立重复试验中成功的次数的离散概率分布,即为二项分布.由二项分布公式可得到其分布列以及期望.(Ⅱ)根据比赛获胜的规定,教师甲前四次投球中至少有两次投中,后两次必须投中,即可能的情况有1.前四次投中2次(六投四中);2.前四次投中3次(六投五中)3.前四次都投中(六投六中).其中第1种情况有种可能,第2中情况有(或)种可能.将上述三种情况的概率相加即得到教师甲获胜的概率.试题解析:(Ⅰ)X的所有可能取值为0,1,2,3,4,5,6.依条件可知,X的分布列为:X
0
1
2
3
4
5
6
P
.或因为,所以.即的数学期望为4.7分(Ⅱ)设教师甲在一场比赛中获奖为事件A,则答:教师甲在一场比赛中获奖的概率为.考点:1.二项分布;2.离散型随机变量的分布列与期望;3.随机事件的概率.19、(1);(2)【解题分析】分析:(1)分类讨论,转化为三个不等式组,即可求解不等式的解集;(2)由题意,令,则不等式恒成立,即为,分类讨论即可求解实数的取值范围.详解:(1)原不等式化为:①或②或③.解得或或.∴原不等式的解集为(2)令,则只须即可.①当时,(时取等);②当时,(时取等).∴.点睛:本题主要考查了绝对值不等式的求解及其应用,其中合理分类讨论,转化为等价不等式组进行求解是解答绝对值问题的关键,着重考查了推理与运算能力.20、(1)(2)【解题分析】
(1)按照坐标变换先得到曲线的参数方程,再化简为普通方程.(2)先计算与圆相切时的斜率,再计算倾斜角的范围.【题目详解】(1)消去得的普通方程(2)当与圆相切时,或,直角倾斜角的取值范围为.【题目点拨】本题考查了参数方程,坐标变换,倾斜角范围,意在考查学生的计算能力和应用能力
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030奢侈品零售市场消费特征与渠道策略研究报告
- 2025-2030新能源汽车行业发展现状深度解析及后续发展趋势与投资前景分析研究报告
- 2025-2030新能源汽车热管理材料市场分析及创新突破与产业布局研究报告
- 2025-2030新能源汽车产业链市场分析及技术创新与行业未来发展研究报告
- 2025-2030新能源储能电站厂房建设项目竣工验收准备材料评估报告
- 2025-2030新材料行业特性分析创新研究市场评估发展分析报告
- 2026重庆两江鱼复智选假日酒店劳务派遣岗位(客房服务员、前台接待、总账会计)招聘1人考试备考试题及答案解析
- 2026上海浦东新区残联文员公开招聘1人考试备考题库及答案解析
- 新零售企业客户关系管理实战方案
- 2026福建厦门市集美实验学校产假顶岗教师招聘2人考试备考试题及答案解析
- 2026年四川单招单招考前冲刺测试题卷及答案
- 2026年全国公务员考试行测真题解析及答案
- (2025)70周岁以上老年人换长久驾照三力测试题库(附答案)
- 2026年泌尿护理知识培训课件
- 昆山钞票纸业有限公司2026年度招聘备考题库附答案详解
- 2025年巴楚县辅警招聘考试备考题库附答案
- 2026云南省产品质量监督检验研究院招聘编制外人员2人考试参考试题及答案解析
- GB/T 46793.1-2025突发事件应急预案编制导则第1部分:通则
- 2026元旦主题班会:马年猜猜乐马年成语教学课件
- 2025年中国工艺美术馆面向社会招聘工作人员2人笔试历年典型考题及考点剖析附带答案详解
- GB/T 2951.11-2008电缆和光缆绝缘和护套材料通用试验方法第11部分:通用试验方法-厚度和外形尺寸测量-机械性能试验
评论
0/150
提交评论