版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省泰州市兴化一中数学高二下期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,为锐角,且,若,则的最大值为()A. B. C. D.2.函数在定义域内可导,的图象如图所示,则导函数可能为()A. B.C. D.3.执行如图所示的程序框图,如果输入,则输出的结果是()A. B. C. D.4.甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖.有人分别采访了四位歌手,甲说:“乙或丙获奖”;乙说:“甲、丙都未获奖”;丙说:“丁获奖”;丁说:“丙说的不对”.若四位歌手中只有一个人说的是真话,则获奖的歌手是()A.甲B.乙C.丙D.丁5.是虚数单位,复数的共轭复数(
)A. B. C. D.6.执行如图所示的程序框图,若,则输出的为()A. B. C. D.7.在回归分析中,的值越大,说明残差平方和()A.越小 B.越大 C.可能大也可能小 D.以上都不对8.已知,若为奇函数,且在上单调递增,则实数的值是()A. B. C. D.9.在三棱柱面,,,,则三棱柱的外接球的表面积为()A. B. C. D.10.已知函数为内的奇函数,且当时,,记,则间的大小关系是()A. B.C. D.11.设,则A. B. C. D.12.数列满足,则数列的前20项的和为()A.100 B.-100 C.-110 D.110二、填空题:本题共4小题,每小题5分,共20分。13.把单位向量绕起点逆时针旋转,再把模扩大为原来的3倍,得到向量,点在线段上,若,则的值为__________.14.函数的图象在处的切线与直线互相垂直,则_____.15.已知实数x,y满足条件,则z=x+3y的最小值是_______________.16.=______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某区组织部为了了解全区科级干部“党风廉政知识”的学习情况,按照分层抽样的方法,从全区320名正科级干部和1280名副科级干部中抽取40名科级干部预测全区科级干部“党风廉政知识”的学习情况.现将这40名科级干部分为正科级干部组和副科级干部组,利用同一份试卷分别进行预测.经过预测后,两组各自将预测成绩统计分析如下表:分组人数平均成绩标准差正科级干部组806副科级干部组704(1)求;(2)求这40名科级干部预测成绩的平均分和标准差;(3)假设该区科级干部的“党风廉政知识”预测成绩服从正态分布,用样本平均数作为的估计值,用样本标准差作为的估计值.利用估计值估计:该区科级干部“党风廉政知识”预测成绩小于60分的约为多少人?附:若随机变量服从正态分布,则;;.18.(12分)已知函数为常数,且)有极大值,求的值.19.(12分)已知函数,其中为常数.(1)证明:函数的图象经过一个定点,并求图象在点处的切线方程;(2)若,求函数在上的值域.20.(12分)在四棱锥中,侧面底面ABCD,底面ABCD为直角梯形,,,,,E,F分别为AD,PC的中点.Ⅰ求证:平面BEF;Ⅱ若,求二面角的余弦值.21.(12分)的内角所对的边分别是,已知.(1)求;(2)若的面积为,,,求,.22.(10分)如图所示,已知ABCD是直角梯形,,.(1)证明:;(2)若,求三棱锥的体积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
把代入等式中,进行恒等变形,用表示,最后利用基本不等式,求出的最大值.【题目详解】,.因为为锐角,且,所以,,,(当且仅当时取等号),所以,因此的最大值为,故本题选B.【题目点拨】本题考查了三角恒等变形,考查了两角差的正切公式,考查了应用基本不等式求代数式最值问题.2、D【解题分析】
根据函数的单调性判断出导函数函数值的符号,然后结合所给的四个选项进行分析、判断后可得正确的结论.【题目详解】由图象可知,函数在时是增函数,因此其导函数在时,有(即函数的图象在轴上方),因此排除A、C.从原函数图象上可以看出在区间上原函数是增函数,所以,在区间上原函数是减函数,所以;在区间上原函数是增函数,所以.所以可排除C.故选D.【题目点拨】解题时注意导函数的符号与函数单调性之间的关系,即函数递增(减)时导函数的符号大(小)于零,由此可判断出导函数图象与x轴的相对位置,从而得到导函数图象的大体形状.3、B【解题分析】
根据题意,运行程序可实现运算求值,从而得答案.【题目详解】第一次执行程序,,第二次执行程序,,第三次执行程序,,因为,满足条件,跳出循环,输出结果.
故选:B.【题目点拨】本题主要考查了程序框图,循环结构,条件分支结构,属于容易题.4、A【解题分析】分析:因为四位歌手中只有一个人说的是真话,假设某一个人说的是真话,如果与条件不符,说明假设不成立,如果与条件相符,说明假设成立.详解:若乙是获奖的歌手,则甲、乙、丁都说的真话,不符合题意;若丙是获奖的歌手,则甲、丁都说的真话,不符合题意;若丁是获奖的歌手,则乙、丙都说的真话,不符合题意;若甲是获奖的歌手,则甲、乙、丙都说的假话,丁说的真话,符合题意;故选A.点睛:本题考查合情推理,属基础题.5、B【解题分析】
利用复数代数形式的乘法运算化简z,再由共轭复数的概念得到答案.【题目详解】因为,所以,故选B.【题目点拨】该题考查的是有关复数的共轭复数问题,涉及到的知识点有复数的除法运算法则,复数的乘法运算法则,以及共轭复数,正确解题的关键是灵活掌握复数的运算法则.6、B【解题分析】
执行程序框图,依次写出每次循环得到的的值,当时,不满足条件,退出循环,输出的值.【题目详解】执行如图所示的程序框图,有满足条件,有,;满足条件,有,;满足条件,有,;满足条件,有,;不满足条件,退出循环,输出的值为本题正确选项:【题目点拨】本题考查了程序框图和算法的应用问题,是对框图中的循环结构进行了考查,属于基础题.7、A【解题分析】分析:根据的公式和性质,并结合残差平方和的意义可得结论.详解:用相关指数的值判断模型的拟合效果时,当的值越大时,模型的拟合效果越好,此时说明残差平方和越小;当的值越小时,模型的拟合效果越差,此时说明残差平方和越大.故选A.点睛:主要考查对回归分析的基本思想及其初步应用等知识的理解,解题的关键是熟知有关的概念和性质,并结合条件得到答案.8、B【解题分析】
先根据奇函数性质确定取法,再根据单调性进行取舍,进而确定选项.【题目详解】因为为奇函数,所以因为,所以因此选B.【题目点拨】本题考查幂函数奇偶性与单调性,考查基本判断选择能力.9、C【解题分析】
利用余弦定理可求得,再根据正弦定理可求得外接圆半径;由三棱柱特点可知外接球半径,求得后代入球的表面积公式即可得到结果.【题目详解】且由正弦定理可得外接圆半径:三棱柱的外接球半径:外接球表面积:本题正确选项:【题目点拨】本题考查多面体外接球表面积的求解问题,关键是能够明确外接球球心的位置,从而利用底面三角形外接圆半径和三棱柱的高,通过勾股定理求得外接球半径.10、D【解题分析】
根据奇函数解得,设,求导计算单调性和奇偶性,根据性质判断大小得到答案.【题目详解】根据题意得,令.则为内的偶函数,当时,,所以在内单调递减又,故,选D.【题目点拨】本题考查了函数的奇偶性单调性,比较大小,构造函数是解题的关键.11、C【解题分析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,然后求解复数的模.详解:,则,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.12、B【解题分析】
数列{an}满足,可得a2k﹣1+a2k=﹣(2k﹣1).即可得出.【题目详解】∵数列{an}满足,∴a2k﹣1+a2k=﹣(2k﹣1).则数列{an}的前20项的和=﹣(1+3+……+19)1.故选:B.【题目点拨】本题考查了数列递推关系、数列分组求和方法,考查了推理能力与计算能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
由题意可得,与夹角为,先求得,则,再利用平面向量数量积的运算法则求解即可.【题目详解】单位向量绕起点逆时针旋转,再把模扩大为原来的3倍,得到向量,所以,与夹角为,因为,所以,所以,故答案为.【题目点拨】本题主要考查平面向量几何运算法则以及平面向量数量积的运算,属于中档题.向量的运算有两种方法:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差;(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和).14、1.【解题分析】
求函数的导数,根据导数的几何意义结合直线垂直的直线斜率的关系建立方程关系进行求解即可.【题目详解】函数的图象在处的切线与直线垂直,函数的图象在的切线斜率本题正确结果:【题目点拨】本题主要考查直线垂直的应用以及导数的几何意义,根据条件建立方程关系是解决本题的关键.15、-5【解题分析】作可行域,则直线z=x+3y过点A(1,-2)取最小值-5点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.16、【解题分析】
试题分析:.考点:对数的运算.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)8,32;(2)72,6;(3)36.【解题分析】
(1)首先求得样本容量与总体的比为,根据比例可求得;(2)根据平均数计算公式可求得平均数;根据正科级和副科级干部组的标准差可分别求得正科级和副科级干部组每个人成绩的平方和;代入方差公式可求得总体的方差,进而得到标准差;(3)首先确定的估计值,的估计值;根据原则求得;根据正态分布曲线可求得,从而可求得预测成绩小于分的人数.【题目详解】(1)样本容量与总体的比为:则抽取的正科级干部人数为;副科级干部人数为,(2)这名科级干部预测成绩的平均分:设正科级干部组每人的预测成绩分别为,副科级干部组每人的预测成绩分别为则正科级干部组预测成绩的方差为:解得:副科级干部组预测成绩的方差为:解得:这名科级干部预测成绩的方差为这名科级干部预测成绩的平均分为,标准差为(3)由,,得的估计值,的估计值由得:所求人数为:人【题目点拨】本题考查统计中的频数的计算、平均数和方差、标准差的求解、正态分布中的概率求解问题,是对统计知识的综合考查,属于常规题型.18、【解题分析】
求导,解出导数方程的两根,讨论导数在这两个点左右两边导数的符号,确定极大值点,再将极大值点代入函数解析式,可求出实数的值.【题目详解】,则,令,得,,,,列表如下:极大值极小值所以,函数在处取得极大值,即,解得.【题目点拨】本题考查利用导数求函数的极值,基本步骤如下:(1)求函数的定义域;(2)求导;(3)求极值点并判断导数在极值点附近的符号,确定极值点的属性;(4)将极值点代入函数解析式可求出极值.19、(1)证明见解析,;(2)【解题分析】
(1)将函数解析式重新整理,解得定点,再求导数,根据导数几何意义得切线斜率,最后根据点斜式得切线方程,(2)先解出,再利用导数求函数值域.【题目详解】(1)因为,所以,所以函数的图像经过一个定点,因为,所以切线的斜率,.所以在点处的切线方程为,即;(2)因为,,所以,故,则,由得或,当变化时,,的变化情况如下表:1200单调减单调增从而在上有最小值,且最小值为,因为,,所以,因为在上单调减,,所以,所以,所以最大值为,所以函数在上的值域为.【题目点拨】本题考查导数几何意义以及利用导数求函数值域,考查综合分析求解能力,属中档题.20、(1)见解析;(2).【解题分析】
(1)连接交于,并连接,,由空间几何关系可证得,利用线面平行的判断定理可得平面.(2)(法一)取中点,连,,,由二面角的定义结合几何体的特征可知为二面角的平面角,计算可得二面角的余弦值为.(法二)以为原点,、、分别为、、建立直角坐标系,则平面法向量可取:,平面的法向量,由空间向量的结论计算可得二面角的余弦值为.【题目详解】(1)连接交于,并连接,,,,为中点,,且,四边形为平行四边形,为中点,又为中点,,平面,平面,平面.(2)(法一)由为正方形可得,.取中点,连,,,侧面底面,且交于,,面,又,为二面角的平面角,又,,,,所以二面角的余弦值为.(法二)由题意可知面,,如图所示,以为原点,、、分别为、、建立直角坐标系,则,,,.平面法向量可取:,平面中,设法向量为,则,取,,所以二面角的余弦值为.【题目点拨】本题主要考查线面平行的判断定理,二面角的定义与求解,空间向量
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 软装设计师年终总结范文
- 有关技术服务合同模板(19篇)
- 学生演讲稿关于父母(3篇)
- 教练员聘用合同
- 湖南省常德市2023-2024学年高一上学期期末考试化学试题(含答案)
- 计时服务计费标准
- 设备及货物采购合同分析
- 设计服务合同创意样本
- 诚信大理石供应与安装协议
- 详尽完备的招标文件指南
- 《实验活动1 配制一定物质的量浓度的溶液》课件
- 2024年国家保安员考试题库附参考答案(考试直接用)
- 《“3S”技术及其应用》试卷
- 2024-电商控价协议范本
- 中药养颜秘籍智慧树知到期末考试答案2024年
- 手术切口感染PDCA案例
- 殡葬礼仪服务应急预案
- 校运会裁判员培训
- 烟雾病与麻醉
- 数字教育工具在智慧课堂中的创新应用
- 《光伏发电工程预可行性研究报告编制规程》(NB/T32044-2018)中文版
评论
0/150
提交评论