




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
周口市重点中学2024届高二数学第二学期期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知随机变量服从正态分布,且,则()A.0.4 B.0.5 C.0.6 D.0.72.中,角A,B,C的对边分别是a,b,c,已知,则A=A. B. C. D.3.已知为虚数单位,复数满足,是复数的共轭复数,则下列关于复数的说法正确的是()A. B.C. D.复数在复平面内表示的点在第四象限4.设a,b,c为三角形ABC三边长,a≠1,b<c,若logc+ba+logc-bA.锐角三角形B.直角三角形C.钝角三角形D.无法确定5.高三某班有60名学生(其中女生有20名),三好学生占,而且三好学生中女生占一半,现在从该班任选一名学生参加座谈会,则在已知没有选上女生的条件下,选上的是三好学生的概率是()A. B. C. D.6.在边长为2的菱形中,,将菱形沿对角线对折,使二面角的余弦值为,则所得三棱锥的内切球的表面积为()A. B. C. D.7.设a=e1eA.a>c>b B.c>a>b C.c>b>a D.a>b>c8.把座位编号为1,2,3,4,5,6的六张电影票全部分给甲、乙、丙、丁四个人,每人最多得两张,甲、乙各分得一张电影票,且甲所得电影票的编号总大于乙所得电影票的编号,则不同的分法共有()A.90种 B.120种 C.180种 D.240种9.已知直线(为参数)与曲线的相交弦中点坐标为,则等于()A. B. C. D.10.设,,,则()A. B. C. D.11.年平昌冬奥会期间,名运动员从左到右排成一排合影留念,最左端只能排甲或乙,最右端不能排甲,则不同的排法种数为()A. B. C. D.12.地球半径为R,北纬45°圈上A,B两点分别在东径130°和西径140°,并且北纬45°圈小圆的圆心为O´,则在四面体O-ABO´中,直角三角形有()A.0个 B.2个 C.3个 D.4个二、填空题:本题共4小题,每小题5分,共20分。13.某学校食堂早餐只有花卷、包子、面条和蛋炒饭四种主食可供食用,有5名同学前去就餐,每人只选择其中一种,且每种主食都至少有一名同学选择.已知包子数量不足仅够一人食用,甲同学肠胃不好不会选择蛋炒饭,则这5名同学不同的主食选择方案种数为________.(用数字作答)14.设函数的图象与的图象关于直线对称,且,则实数_____.15.已知,则展开式中项的系数为______.16.从编号为0,1,2,…,79的80件产品中,采用系统抽样的方法抽取容量是5的样本,若编号为28的产品在样本中,则该样本中产品的最大编号为___三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知复数(i是虚数单位)是关于x的实系数方程根.(1)求的值;(2)复数满足是实数,且,求复数的值.18.(12分)随着节能减排意识深入人心,共享单车在各大城市大范围推广,越来越多的市民在出行时喜欢选择骑行共享单车.为了研究广大市民在共享单车上的使用情况,某公司在我市随机抽取了100名用户进行调查,得到如下数据:每周使用次数1次2次3次4次5次6次及以上男4337830女6544620合计1087111450(1)如果用户每周使用共享单车超过3次,那么认为其“喜欢骑行共享单车”.请完成下面的2×2列联表,并判断能否在犯错误概率不超过0.05的前提下,认为是否“喜欢骑行共享单车”与性别有关;不喜欢骑行共享单车喜欢骑行共享单车合计男女合计(2)每周骑行共享单车6次及6次以上的用户称为“骑行达人”,将频率视为概率,在我市所有的“骑行达人”中随机抽取4名,求抽取的这4名“骑车达人”中,既有男性又有女性的概率.附表及公式:,其中;0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82819.(12分)已知的内角所对的边分别为,且.(1)若,角,求角的值;(2)若的面积,,求的值.20.(12分)在二项式的展开式中。(1)求该二项展开式中所有项的系数和的值;(2)求该二项展开式中含项的系数;(3)求该二项展开式中系数最大的项。21.(12分)在中国绿化基金会的支持下,库布齐沙漠得到有效治理.2017年底沙漠的绿化率已达,从2018年开始,每年将出现这样的情况,上一年底沙漠面积的被栽上树改造为绿洲,而同时,上一年底绿洲面积的又被侵蚀,变为沙漠.(1)设库布齐沙漠面积为1,由绿洲面积和沙漠面积构成.2017年底绿洲面积为,经过1年绿洲面积为,经过n年绿洲面积为,试用表示;(2)问至少需要经过多少年的努力才能使库布齐沙漠的绿洲面积超过(年数取整数).22.(10分)甲、乙两名篮球运动员,甲投篮的命中率为0.6,乙投篮的命中率为0.7,两人是否投中相互之间没有影响,求:(1)两人各投一次,只有一人命中的概率;(2)每人投篮两次,甲投中1球且乙投中2球的概率.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】∵P(x≤6)=0.9,∴P(x>6)=1﹣0.9=0.1.∴P(x<0)=P(x>6)=0.1,∴P(0<x<3)=0.5﹣P(x<0)=0.2.故答案为A.2、C【解题分析】试题分析:由余弦定理得:,因为,所以,因为,所以,因为,所以,故选C.【考点】余弦定理【名师点睛】本题主要考查余弦定理的应用、同角三角函数的基本关系,是高考常考知识内容.本题难度较小,解答此类问题,注重边角的相互转换是关键,本题能较好地考查考生分析问题、解决问题的能力及基本计算能力等.3、B【解题分析】
由复数的乘法除法运算求出,进而得出答案【题目详解】由题可得,在复平面内表示的点为,位于第二象限,,故A,C,D错误;,,故B正确;【题目点拨】本题考查复数的基本运算与几何意义,属于简单题.4、B【解题分析】试题分析:两边除以logc+balogc-ba考点:1.解三角形;2.对数运算.5、B【解题分析】
根据所给的条件求出男生数和男生中三好学生数,本题可以看作一个古典概型,试验发生包含的事件是从40名男生中选出一个人,共有40种结果,满足条件的事件是选到的是一个三好学生,共有5种结果,根据概率公式得到结果.【题目详解】因为高三某班有60名学生(其中女生有20名),三好学生占,而且三好学生中女生占一半,所以本班有40名男生,男生中有5名三好学生,由题意知,本题可以看作一个古典概型,试验发生包含的事件是从40名男生中选出一个人,共有40种结果,满足条件的事件是选到的是一个三好学生,共有5种结果,所以没有选上女生的条件下,选上的是三好学生的概率是,故选B.【题目点拨】该题考查的是有关古典概型的概率求解问题,在解题的过程中,需要首先求得本班的男生数和男生中的三好学生数,根据古典概型的概率公式求得结果.6、C【解题分析】
作出图形,利用菱形对角线相互垂直的性质得出DN⊥AC,BN⊥AC,可得出二面角B﹣AC﹣D的平面角为∠BND,再利用余弦定理求出BD,可知三棱锥B﹣ACD为正四面体,可得出内切球的半径R,再利用球体的表面积公式可得出答案.【题目详解】如下图所示,易知△ABC和△ACD都是等边三角形,取AC的中点N,则DN⊥AC,BN⊥AC.所以,∠BND是二面角B﹣AC﹣D的平面角,过点B作BO⊥DN交DN于点O,可得BO⊥平面ACD.因为在△BDN中,,所以,BD1=BN1+DN1﹣1BN•DN•cos∠BND,则BD=1.故三棱锥A﹣BCD为正四面体,则其内切球半径为正四面体高的,又正四面体的高为棱长的,故.因此,三棱锥A﹣BCD的内切球的表面积为.故选:C.【题目点拨】本题考查几何体的内切球问题,解决本题的关键在于计算几何体的棱长确定几何体的形状,考查了二面角的定义与余弦定理,考查计算能力,属于中等题.7、B【解题分析】
依据y=lnx的单调性即可得出【题目详解】∵b=ln而a=e1e>0,c=又lna=lne1所以lnc>lna,即有c>a,因此c>a>b【题目点拨】本题主要考查利用函数的单调性比较大小。8、A【解题分析】
从6张电影票中任选2张给甲、乙两人,共种方法;再将剩余4张票平均分给丙丁2人,共有种方法;根据分步乘法计数原理即可求得结果.【题目详解】分两步:先从6张电影票中任选2张给甲,乙两人,有种分法;再分配剩余的4张,而每人最多两张,所以每人各得两张,有种分法,由分步原理得,共有种分法.故选:A【题目点拨】本题主要考查分步乘法计数原理与组合的综合问题.9、A【解题分析】
根据参数方程与普通方程的互化,得直线的普通方程为,由极坐标与直角坐标的互化,得曲线普通方程为,再利用“平方差”法,即可求解.【题目详解】由直线(为参数),可得直线的普通方程为,由曲线,可得曲线普通方程为,设直线与椭圆的交点为,,则,,两式相减,可得.所以,即直线的斜率为,所以,故选A.【题目点拨】本题主要考查了参数方程与普通方程、极坐标方程与直角坐标方程的互化,以及中点弦问题的应用,其中解答中熟记互化公式,合理应用中点弦的“平方差”法是解答的关键,着重考查了推理与运算能力,属于基础题.10、C【解题分析】
分别求出,,的范围,从而得到答案.【题目详解】根据指数函数图像可得,,;由于,则,则;所以;故答案选C【题目点拨】本题考查指数、对数值的大小比较,解题的关键利用指数对数的运算法则求出值的范围,属于中档题.11、C【解题分析】分析:根据题意,分两种情况讨论:①最左边排甲;②最左边排乙,分别求出每一种情况的安排方法数目,由分类计数原理计算即可得到答案.详解:根据题意,最左端只能排甲或乙,则分两种情况讨论:①最左边排甲,则剩下4人进行全排列,有种安排方法;②最左边排乙,则先在剩下的除最右边的3个位置选一个安排甲,有3种情况,再将剩下的3人全排列,有种情况,此时有种安排方法,则不同的排法种数为种.故选:C.点睛:解决排列类应用题的策略(1)特殊元素(或位置)优先安排的方法,即先排特殊元素或特殊位置.(2)分排问题直排法处理.(3)“小集团”排列问题中先集中后局部的处理方法.12、C【解题分析】
画图标注其位置,即可得出答案。【题目详解】如图所示:,即有3个直角三角形。【题目点拨】本题涉及到了地理相关的经纬度概念。学生需理解其基本概念,将题干所述信息转换为数学相关知识求解。二、填空题:本题共4小题,每小题5分,共20分。13、1【解题分析】
分类讨论:甲选包子,则有2人选同一种主食,剩下2人选其余主食;甲不选包子,其余4人中1人选包子,方法为4种,甲花卷或面条,方法为2种,其余3人,有1人选甲选的主食,剩下2人选其余主食,或没有人选甲选的主食,相加后得到结果.【题目详解】分类讨论:甲选包子,则有2人选同一种主食,方法为=18,剩下2人选其余主食,方法为=2,共有方法18×2=36种;甲不选包子,其余4人中1人选包子,方法为4种,甲花卷或面条,方法为2种,其余3人,若有1人选甲选的主食,剩下2人选其余主食,方法为3=6;若没有人选甲选的主食,方法为=6,共有4×2×(6+6)=96种,故共有36+96=1种,故答案为:1.【题目点拨】(1)解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组方法的求法.14、【解题分析】
设f(x)上任意一点为(x,y),则(x,y)关于直线y=﹣x对称的点为(﹣y,﹣x),把(﹣y,﹣x)代入,得f(x)=log3(-x)+a,由此利用f(﹣3)+f(﹣)=4,能求出a的值.【题目详解】函数y=f(x)的图象与的图象关于直线y=﹣x对称,设f(x)上任意一点为(x,y),则(x,y)关于直线y=﹣x对称的点为(﹣y,﹣x),把(﹣y,﹣x)代入,得﹣x=,∴f(x)=log3(-x)+a,∵f(﹣3)+f(﹣)=4,∴1+a﹣1+a=4,解得a=1.故答案为1.【题目点拨】本题考查指对函数的相互转化,考查对数值的运算,考查函数与方程思想,是基础题.15、-2【解题分析】
利用定积分可求=2,则二项式为,展开式的通项:.令5-2r=-1,解得r=1.继而求出系数即可.【题目详解】∵=2,则二项式的展开式的通项:,令5-2r=-1,解得r=1.∴展开式中x-1的系数为.故答案为:-2.【题目点拨】本题考查二项式定理通项的应用,根据通项公式展开即可,属于基础题.16、1【解题分析】
确定系统抽样间隔k=16,根据样本中含编号为28的产品,即可求解,得到答案.【题目详解】由系统抽样知,抽样间隔k=80因为样本中含编号为28的产品,则与之相邻的产品编号为12和44,故所取出的5个编号依次为12,28,44,60,1,即最大编号为1.【题目点拨】本题主要考查了系统抽样的应用,其中解答中熟记系统抽样的方法,确定好抽样的间隔是解答的关键,着重考查了运算与求解能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或.【解题分析】
(1)实系数方程虚根是互为共轭复数的,得出另一根为,根据韦达定理即可得解.(2)设,由是实数,得出关于的方程,又得的另一个方程,联立即可解得的值,即得解.【题目详解】(1)实系数方程虚根是互为共轭复数的,所以由共轭虚根定理另一根是,根据韦达定理可得.(2)设,得又得,所以或,因此或w=.【题目点拨】本题考查了实系数一元二次方程的虚根成对原理、根与系数的关系,复数的乘法及模的运算,考查了推理能力与计算能力,属于中档题.18、(1)列联表见解析;在犯错误的概率不超过0.05的前提下,不能认为是否“喜欢骑行共享单车”与性别有关.(2)【解题分析】
(1)根据题目所给数据,填写2×2列联表,根据公式计算出的值,根据题目所给表格,得出对应的统计结论.(2)根据排列组合以及对立面的思想,求出全都是女生和全都是男生的概率,用概率和为1作差即可得到所要求的概率.【题目详解】解:(1)由题目表格中的数据可得如下2×2列联表:不喜欢骑行共享单车喜欢骑行共享单车合计男104555女153045合计2575100将列联表中的数据代入公式,得,所以在犯错误的概率不超过0.05的前提下,不能认为是否“喜欢骑行共享单车”与性别有关.(2)将频率视为概率,在我市的“骑行达人”中随机抽取1名,则该“骑行达人”是男性的概率为,是女性的概率为,故抽取的这4名“骑行达人”中,既有男性又有女性的概率.【题目点拨】本题主要考查利用2×2列联表判断两个变量的相关性以及利用逆向思维“对立面概率”求解情况比较复杂的概率问题.19、(1)或.(2)【解题分析】
(1)根据正弦定理,求得,进而可求解角B的大小;(2)根据三角函数的基本关系式,求得,利用三角形的面积公式和余弦定理,即可求解。【题目详解】(1)根据正弦定理得,.,,或.(2),且,.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 餐饮店选址评估及合作开发合同
- 聘请佣人协议书范本模板
- 财务人员保密协议及财务审计合作合同
- 电商市场调研与运营优化合同
- 财务咨询保密协议及知识产权保护合同
- 汽车金融公司车辆股份投资与风险控制合同
- 财务经理担保及业绩目标责任协议
- 矿产资源开采权转让与矿山生态修复合同范本
- 场地监管廉政规范实施合同
- 银行岗前培训汇报
- 【MOOC】天文探秘-南京大学 中国大学慕课MOOC答案
- 《老年人合理用药》课件
- 【MOOC】电工电子学-浙江大学 中国大学慕课MOOC答案
- 2024年广西职业院校技能大赛高职组《供应链管理》赛项规程
- 现代技术服务费合同1
- 2024山西焦煤集团公司招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2024年度工厂整体搬迁劳动力外包合同
- 水利工程阀门安装及调试方案
- 旅游住宿安排协议
- CT设备故障处理及应急方案
- 心脑血管疾病预防课件
评论
0/150
提交评论