2024届重庆市涪陵高级中学高二数学第二学期期末教学质量检测试题含解析_第1页
2024届重庆市涪陵高级中学高二数学第二学期期末教学质量检测试题含解析_第2页
2024届重庆市涪陵高级中学高二数学第二学期期末教学质量检测试题含解析_第3页
2024届重庆市涪陵高级中学高二数学第二学期期末教学质量检测试题含解析_第4页
2024届重庆市涪陵高级中学高二数学第二学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届重庆市涪陵高级中学高二数学第二学期期末教学质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列函数既是奇函数又在(﹣1,1)上是减函数的是()A. B.C.y=x﹣1 D.y=tanx2.方程至少有一个负根的充要条件是A. B. C. D.或3.已知是椭圆和双曲线的公共焦点,是它们的一个公共点,且,则椭圆和双曲线的离心率乘积的最小值为()A. B. C. D.4.某几何体的三视图如图,其正视图中的曲线部分为半圆,则该几何体的表面积为().A. B.C. D.5.某市某校在秋季运动会中,安排了篮球投篮比赛.现有20名同学参加篮球投篮比赛,已知每名同学投进的概率均为0.4,每名同学有2次投篮机会,且各同学投篮之间没有影响.现规定:投进两个得4分,投进一个得2分,一个未进得0分,则其中一名同学得2分的概率为()A.0.5 B.0.48 C.0.4 D.0.326.已知f'x是函数fx的导函数,将y=fA. B.C. D.7.等比数列的前n项和为,已知,则A. B. C. D.8.在等比数列中,已知,则的值为()A. B. C. D.9.中国古代数学名著《九章算术•商功》中记载了一种名为“堑堵”的几何体:“邪解立方得二堑堵邪解堑堵”錾堵是一个长方体沿不在同一表面上的相对两棱斜截所得的立体图形其正视图和俯视图(直角三角形)如图所示,则该“堑堵”的外接球的大圆面积为()A. B. C. D.10.平面向量与的夹角为,,,则()A. B. C.0 D.211.已知函数,其中为自然对数的底数,则对任意,下列不等式一定成立的是()A. B.C. D.12.若复数(为虚数单位)是纯虚数,则实数()A. B. C.0 D.1二、填空题:本题共4小题,每小题5分,共20分。13.若函数有且只有一个零点,是上两个动点(为坐标原点),且,若两点到直线的距离分别为,则的最大值为__________.14.投掷一枚图钉,设针尖向上的概率为0.6,那么针尖向下的概率为0.1.若连续掷一枚图钉3次,则至少出现2次针尖向上的概率为_____________.15.如图,在三角形中,D为边上一点,且,,则为______.16.当时,有,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在三棱锥中,两两垂直,,且为线段的中点.(1)证明:平面;(2)若,求平面与平面所成角的正弦值.18.(12分)设曲线.(Ⅰ)若曲线表示圆,求实数的取值范围;(Ⅱ)当时,若直线与曲线交于两点,且,求实数的值.19.(12分)某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为160人、120人、人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人到前排就坐,其中高二代表队有6人.(1)求的值;(2)把到前排就坐的高二代表队6人分别记为,,,,,,现随机从中抽取2人上台抽奖.求或没有上台抽奖的概率.(3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个之间的均匀随机数,,并按如图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.20.(12分)随着网络营销和电子商务的兴起,人们的购物方式更具多样化,某调查机构随机抽取10名购物者进行采访,5名男性购物者中有3名倾向于选择网购,2名倾向于选择实体店,5名女性购物者中有2名倾向于选择网购,3名倾向于选择实体店.(1)若从10名购物者中随机抽取2名,其中男、女各一名,求至少1名倾向于选择实体店的概率;(2)若从这10名购物者中随机抽取3名,设X表示抽到倾向于选择网购的男性购物者的人数,求X的分布列和数学期望.21.(12分)已知函数,为常数(Ⅰ)若时,已知在定义域内有且只有一个极值点,求的取值范围;(Ⅱ)若,已知,恒成立,求的取值范围。22.(10分)如图,已知三棱柱的侧棱与底面垂直,,分别是的中点.(1)求异面直线与所成角的余弦值;(2)求二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

对各选项逐一判断即可,利用在上为增函数,在上为减函数,即可判断A选项不满足题意,令,即可判断其在递增,结合复合函数的单调性判断法则即可判断B选项满足题意对于C,D,由初等函数性质,直接判断其不满足题意.【题目详解】解:根据题意,依次分析选项:对于A,在上为增函数,在上为减函数,所以y(3x﹣3﹣x)在R上为增函数,不符合题意;对于B,,所以是奇函数,令,则由,两个函数复合而成又,它在上单调递增所以既是奇函数又在(﹣1,1)上是减函数,符合题意,对于C,y=x﹣1是反比例函数,是奇函数,但它在(﹣1,1)上不是减函数,不符合题意;对于D,y=tanx为正切函数,是奇函数,但在(﹣1,1)上是增函数,不符合题意;故选:B.【题目点拨】本题主要考查了函数奇偶性的判断,还考查了复合函数单调性的判断法则及初等函数的性质,属于中档题。2、C【解题分析】试题分析:①时,显然方程没有等于零的根.若方程有两异号实根,则;若方程有两个负的实根,则必有.②若时,可得也适合题意.综上知,若方程至少有一个负实根,则.反之,若,则方程至少有一个负的实根,因此,关于的方程至少有一负的实根的充要条件是.故答案为C考点:充要条件,一元二次方程根的分布3、B【解题分析】设椭圆的长半轴长为,双曲线的实半轴常为,故选B.4、C【解题分析】几何体是一个组合体,包括一个三棱柱和半个圆柱,三棱柱的是一个底面是腰为的等腰直角三角形,高是,其底面积为:,侧面积为:;圆柱的底面半径是,高是,其底面积为:,侧面积为:;∴组合体的表面积是,本题选择C选项.点睛:(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.5、B【解题分析】

事件“第一次投进球”和“第二次投进球”是相互独立的,利用对立事件和相互独立事件可求“其中一名同学得2分”的概率.【题目详解】设“第一次投进球”为事件,“第二次投进球”为事件,则得2分的概率为.故选B.【题目点拨】本题考查对立事件、相互独立事件,注意互斥事件、对立事件和独立事件三者之间的区别,互斥事件指不同时发生的事件,对立事件指不同时发生的事件且必有一个发生的两个事件,而独立事件指一个事件的发生与否与另一个事件没有关系.6、D【解题分析】

根据f'x的正负与f【题目详解】因为f'x是函数fx的导数,f'x>0时,函数A中,直线对应f'x,曲线对应B中,x轴上方曲线对应fx,x轴下方曲线对应fC中,x轴上方曲线对应f'x,x轴下方曲线对应D中,无论x轴上方曲线或x轴下方曲线,对应f'x时,fx都应该是单调函数,但图中是两个不单调的函数,显然故选D【题目点拨】本题主要考查函数与导函数图像之间的关系,熟记导函数与导数间的关系即可,属于常考题型.7、A【解题分析】设公比为q,则,选A.8、D【解题分析】

根据数列是等比数列得到公比,再由数列的通项公式得到结果.【题目详解】因为数列是等比数列,故得到进而得到,则故答案为:D.【题目点拨】这个题目考查了等比数列的通项的求法,是简单题.9、B【解题分析】

首先根据题意得到“堑堵”是半个长方体的直三棱柱,再求其外接球的大圆面积即可.【题目详解】由题知:“堑堵”是半个长方体的直三棱柱,如图所示:设外接球大圆的半径为,.,所以外接球的大圆面积为.故选:B【题目点拨】本题主要考查三棱柱的外接球,同时考查三视图的直观图,属于中档题.10、D【解题分析】

先由,求出,再求出,进而可求出【题目详解】因为,所以,所以,所以.故选D【题目点拨】本题主要考查向量模的运算,熟记公式即可,属于基础题型.11、A【解题分析】

,可得在上是偶函数.函数,利用导数研究函数的单调性即可得出结果.【题目详解】解:,在上是偶函数.函数,,令,则,函数在上单调递增,,函数在上单调递增.,,.故选:A.【题目点拨】本题考查利用导数研究函数的单调性、函数的奇偶性,不等式的性质,考查了推理能力与计算能力,属于中档题.12、A【解题分析】因为是纯虚数,二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

根据函数的奇偶性先求解出的值,然后根据判断出中点的轨迹,再根据转化关系将的最大值转化为圆上点到直线的距离最大值,由此求解出结果.【题目详解】因为的定义域为,且,所以是偶函数,又因为有唯一零点,所以,所以,所以,因为,所以,所以,所以,设的中点为,,如下图所示:所以,又因为,所以,所以的轨迹是以坐标原点为圆心,半径为的圆,所以当取最大值时,为过垂直于的线段与的交点,所以,所以.故答案为:.【题目点拨】本题考查函数奇偶性、圆中的轨迹方程、圆上点到直线的距离最值,属于综合型题型,难度较难.圆上点到一条与圆相离直线的距离最值求解方法:先计算出圆心到直线的距离,则距离最大值为,距离最小值为.14、【解题分析】

至少出现2次针尖向上包括:出现2次针尖向上和出现3次针尖向上,分别求出它们的概率,根据互斥事件概率加法公式,可得答案.【题目详解】∵投掷一枚图钉,设针尖向上的概率为0.6,针尖向下的概率为0.1.∴连续掷一枚图钉3次,出现2次针尖向上的概率为:0.132,出现3次针尖向上的概率为:0.216,故至少出现2次针尖向上的概率,故答案为:.【题目点拨】本题考查的知识点是互斥事件概率加法公式,先求出出现2次针尖向上和出现3次针尖向上的概率,是解答的关键.15、【解题分析】

延长AD,过点C作,垂足为E,由,则,设,则,可证明,则,从而求得,即的值.【题目详解】解:如图,延长AD,过点C作,垂足为E,,,设,则,,,,则,,,,,.故答案为:.【题目点拨】本题考查了锐角三角函数的定义,相似三角形的判定和性质以及直角三角形的性质,基础知识要熟练掌握.16、1【解题分析】

利用复数代数形式的乘除运算化简,复数相等的条件列式求解a值.【题目详解】∵(1﹣i)(a+i)=(a+1)+(1﹣a)i,∴1﹣a=0,即a=1.故答案为1.【题目点拨】本题考查复数代数形式的乘除运算,考查复数的分类,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解题分析】分析:(1)由题意得,又,从而即可证明;(2)以为坐标原点,建立如图所示的空间直角坐标系,即可运用空间向量的方法求得答案.详解:(1)证明:因为,为线段的中点,所以.又两两垂直,且所以平面,则.因为,所以平面.(2)解:以为坐标原点,建立如图所示的空间直角坐标系,则.∵,∴可设,则,∴,则,设平面的法向量为,则,即令,得.平面的一个法向量为,则.故平面与平面所成二面角的正弦值为.点睛:求二面角最常用的方法就是分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.18、(1)或.(2).【解题分析】分析:(Ⅰ)根据圆的一般方程的条件列不等式求出的范围;

(Ⅱ)利用垂径定理得出圆的半径,从而得出的值.详解:(Ⅰ)曲线C变形可得:,由可得或(Ⅱ)因为a=3,所以C的方程为即,所以圆心C(3,0),半径,因为所以C到直线AB的距离,解得..点睛:本题考查了圆的标准方程,考查圆的弦长的求法,属于基础题.19、(1)160;(2);(3)【解题分析】本题考查概率与统计知识,考查分层抽样,考查概率的计算,确定概率的类型是关键.(1)根据分层抽样可得故可求n的值;(2)求出高二代表队6人,从中抽取2人上台抽奖的基本事件,确定a和b至少有一人上台抽奖的基本事件,根据古典概型的概率公式,可得a和b至少有一人上台抽奖的概率(3)确定满足0≤x≤1,0≤y≤1点的区域,由条件得到的区域为图中的阴影部分,计算面积,可求该代表中奖的概率.解:(Ⅰ)由题意得,解得.…………4分(Ⅱ)从高二代表队6人中随机抽取2人的所有基本事件如下:(a,b)、(a,c)、(a,d)、(a,e)(a,f)、(b,c)(b,d)(b,e)、(b,f)、(c,d)、(c,e)、(c,f)、(d,e)、(d,f)共15种………6分设“高二代表队中a和b至少有一人上台抽奖”为事件,其中事件的基本事件有9种.则.…………9分(Ⅲ)由已知,可得,点在如图所示的正方形OABC内,由条件,得到区域为图中的阴影部分.由,令得,令得.∴设“该运动员获得奖品”为事件则该运动员获得奖品的概率……………14分20、(1)(2)【解题分析】【试题分析】(1)先求事件“随机抽取2名,(其中男、女各一名)都选择网购”概率,再运用对立事件的概率公式求至少1名倾向于选择实体店的概率;(2)先确定随机变量取法,分别求出对应概率,列表可得分布列,最后运用随机变量的数学期望公式计算出数学期望解:(1)设“至少1名倾向于选择实体店”为事件A,则表示事件“随机抽取2名,(其中男、女各一名)都选择网购”,则P(A)=1﹣P=1﹣=.(2)X的取值为0,1,2,1.P(X=k)=,P(X=0)=,P(X=1)=,P(X=2)=,P(X=1)=.E(X)=0×+1×+2×+1×=.21、(1)(2)【解题分析】分析:⑴将代入,求出的表达式,求导,然后综合只有一个极值点即可求出结果⑵法一:将代入,求导后利用单调性来求解;法二:整体思想,采用放缩法进行求解详解:(Ⅰ)当时,,,因为在定义域内有且只

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论