2024届云南省施甸县第一中学数学高二下期末复习检测试题含解析_第1页
2024届云南省施甸县第一中学数学高二下期末复习检测试题含解析_第2页
2024届云南省施甸县第一中学数学高二下期末复习检测试题含解析_第3页
2024届云南省施甸县第一中学数学高二下期末复习检测试题含解析_第4页
2024届云南省施甸县第一中学数学高二下期末复习检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届云南省施甸县第一中学数学高二下期末复习检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的图象可能是()A. B.C. D.2.若函数在上可导,,则()A.2 B.4 C.-2 D.-43.执行如图所示的程序框图,当输出的值为时,则输入的()A. B. C. D.4.记为等比数列的前项和.若,,则()A.2 B.-4 C.2或-4 D.45.若函数为偶函数,则()A.-1 B.1 C.-1或1 D.06.已知奇函数是定义在上的减函数,且,,,则的大小关系为()A. B. C. D.7.已知,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件8.在建立两个变量与的回归模型时,分别选择了4个不同的模型,这四个模型的相关系数分别为0.25、0.50、0.98、0.80,则其中拟合效果最好的模型是()A.模型1 B.模型2 C.模型3 D.模型49.求函数的值域()A.[0,+∞) B.[,+∞) C.[,+∞) D.[,+∞)10.已知数列,如果,,,……,,……,是首项为1,公比为的等比数列,则=A. B. C. D.11.函数导数是()A. B. C. D.12.广告投入对商品的销售额有较大影响,某电商对连续5个年度的广告费和销售额进行统计,得到统计数据如下表(单位:万元)广告费23456销售额2941505971由上表可得回归方程为,据此模型,预测广告费为10万元时销售额约为()A.118.2万元 B.111.2万元 C.108.8万元 D.101.2万元二、填空题:本题共4小题,每小题5分,共20分。13.有个元素的集合的3元子集共有20个,则=_______.14.向量的夹角为,且则__________.15.已知复数对应复平面上的点,复数满足,则复数的共轭复数为______.16.设满足约束条件,则的最大值为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知复数.(I)若,求复数;(II)若复数在复平面内对应的点位于第一象限,求的取值范围.18.(12分)在直角坐标系中,,不在轴上的动点满足于点为的中点。(1)求点的轨迹的方程;(2)设曲线与轴正半轴的交点为,斜率为的直线交于两点,记直线的斜率分别为,试问是否为定值?若是,求出该定值;若不是,请说明理由。19.(12分)双曲线的虚轴长为,两条渐近线方程为.(1)求双曲线的方程;(2)双曲线上有两个点,直线和的斜率之积为,判别是否为定值,;(3)经过点的直线且与双曲线有两个交点,直线的倾斜角是,是否存在直线(其中)使得恒成立?(其中分别是点到的距离)若存在,求出的值,若不存在,请说明理由.20.(12分)“节约用水”自古以来就是中华民族的优良传统.某市统计局调查了该市众多家庭的用水量情况,绘制了月用水量的频率分布直方图,如下图所示.将月用水量落入各组的频率视为概率,并假设每天的用水量相互独立.(l)求在未来连续3个月里,有连续2个月的月用水量都不低于12吨且另1个月的月用水量低于4吨的概率;(2)用表示在未来3个月里月用水量不低于12吨的月数,求随杌变量的分布列及数学期望.21.(12分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)把的参数方程化为极坐标方程:(2)求与交点的极坐标.22.(10分)如图,为圆锥的高,B、C为圆锥底面圆周上两个点,,,,是的中点.(1)求该圆锥的全面积;(2)求异面直线与所成角的大小.(结果用反三角函数值表示)

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

求导,判断导函数函数值的正负,从而判断函数的单调性,通过单调性判断选项.【题目详解】解:当时,,则,若,,,若,,,则恒成立,即当时,恒成立,则在上单调递减,

故选:A.【题目点拨】本题主要考查函数的图象,可以通过函数的性质进行排除,属于中档题.2、D【解题分析】由题设可得,令可得,所以,则,应选答案D.3、B【解题分析】

分析:根据循环结构的特征,依次算出每个循环单元的值,同时判定是否要继续返回循环体,即可求得S的值.详解:因为当不成立时,输出,且输出所以所以所以选B点睛:本题考查了循环结构在程序框图中的应用,按照要求逐步运算即可,属于简单题.4、B【解题分析】

利用等比数列的前项和公式求出公比,由此能求出结果.【题目详解】∵为等比数列的前项和,,,∴,解得,∴,故选B.【题目点拨】本题主要考查等比数列的性质以及其的前项和等基础知识,考查运算求解能力,是基础题.5、C【解题分析】

由f(x)为偶函数,得,化简成xlg(x2+1﹣m2x2)=0对恒成立,从而得到x2+1﹣m2x2=1,求出m=±1即可.【题目详解】若函数f(x)为偶函数,∴f(﹣x)=f(x),即;得对恒成立,∴x2+1﹣m2x2=1,∴(1﹣m2)x2=0,∴1﹣m2=0,∴m=±1.故选C.【题目点拨】本题考查偶函数的定义,以及对数的运算性质,平方差公式,属于基础题.6、C【解题分析】

根据对数运算性质和对数函数单调性可得,根据指数函数单调性可知;利用为减函数可知,结合为奇函数可得大小关系.【题目详解】,即:又是定义在上的减函数又为奇函数,即:本题正确选项:【题目点拨】本题考查根据指数函数、对数函数单调性,结合奇偶性比较函数值的大小关系,关键是能够通过函数得单调性,利用临界值的方式得到自变量之间的大小关系.7、B【解题分析】

首先判断充分性可代特殊值,然后再判断必要性.【题目详解】当时,令,此时,所以不是充分条件;反过来,当时,可得,且,即,所以是必要条件,是的必要不充分条件,故选B.【题目点拨】本题考查必要不充分条件,根据必要不充分条件的判断方法判断即可.8、C【解题分析】

相关系数的绝对值越靠近1,拟合效果越好,据此得到答案.【题目详解】四个模型的相关系数分别为0.25、0.50、0.98、0.80相关系数的绝对值越靠近1,拟合效果越好故答案选C【题目点拨】本题考查了相关系数,相关系数的绝对值越靠近1,拟合效果越好.9、D【解题分析】

设t,t≥0,则x=t2+1,y=2t2﹣t+2,由此再利用配方法能求出函数y=2x的值域.【题目详解】解:设t,t≥0,则x=t2+1,∴y=2t2﹣t+2=2(t)2,故选:D.【题目点拨】本题考查函数的值域的求法,是基础题,解题时要注意换元法的合理运用.10、A【解题分析】分析:累加法求解。详解:,,解得点睛:形如的模型,求通项公式,用累加法。11、A【解题分析】

根据导数的基本公式和运算法则求导即可.【题目详解】,故选:A.【题目点拨】本题考查了导数的基本公式和运算法则,属于基础题.12、B【解题分析】分析:平均数公式可求出与的值,从而可得样本中心点的坐标,代入回归方程求出,再将代入回归方程得出结论.详解:由表格中数据可得,,,解得,回归方程为,当时,,即预测广告费为10万元时销售额约为,故选B.点睛:本题考查了线性回归方程的性质与数值估计,属于基础题.回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.二、填空题:本题共4小题,每小题5分,共20分。13、6【解题分析】

在个元素中选取个元素共有种,解=20即可得解.【题目详解】在个元素中选取个元素共有种,解=20得,故答案为6.【题目点拨】本题考查了组合数在集合中的应用,属于基础题.14、6【解题分析】

由题意,利用向量的数量积的运算,可得,即可求解.【题目详解】由题意,可知向量的夹角为,且则.【题目点拨】本题主要考查了平面向量的数量积的运算,其中解答中熟记平面向量的数量积的运算公式,准确计算是解答的关键,着重考查了推理与运算能力.15、【解题分析】

先计算复数的模,再计算复数,最后得到共轭复数.【题目详解】复数对应复平面上的点复数的共轭复数为故答案为【题目点拨】本题考查了复数的运算,复数的模,共轭复数,意在考查学生的计算能力.16、5.【解题分析】.试题分析:约束条件的可行域如图△ABC所示.当目标函数过点A(1,1)时,z取最大值,最大值为1+4×1=5.【考点】线性规划及其最优解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】试题分析:(1)由题意计算可得,若,则,.(2)结合(1)的计算结果得到关于实数a的不等式,求解不等式可得的取值范围为.试题解析:(1),若,则,∴,∴.(2)若在复平面内对应的点位于第一象限,则且,解得,即的取值范围为.18、(1);(2)定值0【解题分析】

(1)解法一:设点的坐标为,可得出点,由,转化为,利用斜率公式计算并化简得出曲线的方程,并标出的范围;解法二:设点,得出,由知点在圆上,再将点的坐标代入圆的方程并化简,可得出曲线的方程,并标出的范围;(2)先求出点的坐标,并设直线的方程为,设点、,将直线的方程与曲线的方程联立,列出韦达定理,利用斜率公式并代入韦达定理计算出来证明结论成立。【题目详解】(1)解法一:设点,因为轴,为的中点,则,,所以,,即,化简得,所以,的方程为;解法二:依题意可知点的轨迹方程为,设点,因为轴,为的中点,所以,,所以,即,所以,的方程为;(2)依题意可知,设直线的方程为,、,由,得,所以,,,所以,所以,为定值。【题目点拨】本题考查动点的轨迹方程,考查直线与椭圆的综合问题,考查将韦达定理法在直线与圆锥曲线综合问题中的应用,这类问题的求解方法就是将直线方程与圆锥曲线方程联立,结合韦达定理求解,运算量大是基本特点,化简是关键,考查计算能力,属于难题。19、(1);(2)8;(3)存在且【解题分析】分析:(1)根据题意,双曲线的虚轴长为,两条渐近线方程为.易求求双曲线的方程;(2)设直线的斜率,显然,联立得,求出,,可证;(3)设直线方程,联立,(*),∵,方程总有两个解,设,得到,根据得,整理得,由,则符合题目要求,存在直线.详解:(1)双曲线;(2)设直线的斜率,显然,联立得,,,;(3)设直线方程,联立,(*),∵,方程总有两个解,设,,根据得,整理得,∵,∴符合题目要求,存在直线.点睛:本题考查双曲线的求法,直线与双曲线的位置关系,属难题.20、(1)0.027;(2)见解析【解题分析】分析:(1)利用相互独立事件乘法概率公式和互斥事件加法公式能求出在未来连续3个月里,有连续2个月的月用水量都不低于12吨且另1个月的月用水量低于4吨的概率;(2)由题意得X的可能取值为0,1,2,3,且X~(3,0.3),由此能求出随机变量X的分布列数学期望E(X).详解:(1)设表示事件“月用水量不低于12吨”,表示事件“月用水量低于4吨”,表示事件“在未来连续3个月里,有连续2个月的月用水量都不低于12吨且另1个月的月用水量低于4吨”.因此,,.因为每天的用水量相互独立,所以.(2)可能取的值为0,1,2,3,相应的概率分别为,,,.故的分布列为故的数学期望为.点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是:“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布X~B(n,p)),则此随机变量的期望可直接利用这种典型分布的期望公式(E(X)=np)求得.21、(1)(2)与交点的极坐标为,和【解题分析】

(1)先把曲线化成直角坐标方程,再化简成极坐标方程;(2)联立曲线和曲线的方程解得即可.【题目详解】(1)曲线的直角坐标方程为:,即.的参数方程化为极坐标方程为;(2)联立可得:,与交点的极坐标为,和.【题目点拨】本题考查了参数方程,直角坐标方程,极坐标方程的互化,也考查了极坐标方程的联立,属于基础题.22、(1)(2)【解题分析】分析:(1)根据,,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论