2024届临川一中实验学校数学高二第二学期期末调研模拟试题含解析_第1页
2024届临川一中实验学校数学高二第二学期期末调研模拟试题含解析_第2页
2024届临川一中实验学校数学高二第二学期期末调研模拟试题含解析_第3页
2024届临川一中实验学校数学高二第二学期期末调研模拟试题含解析_第4页
2024届临川一中实验学校数学高二第二学期期末调研模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届临川一中实验学校数学高二第二学期期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若是离散型随机变量,,,又已知,,则的值为()A. B. C.3 D.12.把圆x2+(y-2)A.线段 B.等边三角形C.直角三角形 D.四边形3.如图,从地面上C,D两点望山顶A,测得它们的仰角分别为45°和30°,已知米,点C位于BD上,则山高AB等于()A.100米 B.米 C.米 D.米4.已知a=tan(-π5)A.a>b>c B.c>b>aC.c>a>b D.b>c>a5.若随机变量服从正态分布,且,()A. B. C. D.6.已知为虚数单位,则复数=()A. B. C. D.7.设,,,则大小关系是()A. B.C. D.8.某三棱锥的三视图如图所示,则该三棱锥的体积是()A. B. C. D.9.已知正方体的棱长为2,P是底面上的动点,,则满足条件的点P构成的图形的面积等于()A. B. C. D.10.体育场南侧有4个大门,北侧有3个大门,某学生到该体育场练跑步,则他进出门的方案有()A.12种 B.7种 C.24种 D.49种11.一工厂生产的100个产品中有90个一等品,10个二等品,现从这批产品中抽取4个,则最多有一个二等品的概率为()A.B.C.D.12.正弦函数是奇函数,是正弦函数,因此是奇函数,以上推理()A.结论正确 B.大前提不正确 C.小前提不正确 D.大前提、小前提、结论都不正确二、填空题:本题共4小题,每小题5分,共20分。13.已知为椭圆上的任意一点,则的最大值为________.14.已知角的终边经过,则________.15.已知,,若不等式恒成立,则的最大值为______.16.双曲线的渐近线方程为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设集合,其中.(1)写出集合中的所有元素;(2)设,证明“”的充要条件是“”(3)设集合,设,使得,且,试判断“”是“”的什么条件并说明理由.18.(12分)大型水果超市每天以元/千克的价格从水果基地购进若干水果,然后以元/千克的价格出售,若有剩余,则将剩余的水果以元/千克的价格退回水果基地,为了确定进货数量,该超市记录了水果最近天的日需求量(单位:千克),整理得下表:日需求量频数以天记录的各日需求量的频率代替各日需求量的概率.(1)求该超市水果日需求量(单位:千克)的分布列;(2)若该超市一天购进水果千克,记超市当天水果获得的利润为(单位:元),求的分布列及其数学期望.19.(12分)已知函数.(1)当时,求关于的不等式的解集;(2)若关于的不等式有解,求的取值范围.20.(12分)已知集合,集合是集合S的一个含有8个元素的子集.(1)当时,设,①写出方程的解();②若方程至少有三组不同的解,写出k的所有可能取值;(2)证明:对任意一个X,存在正整数k,使得方程至少有三组不同的解.21.(12分)已知(1+m)n(m是正实数)的展开式的二项式系数之和为128,展开式中含x项的系数为84,(I)求m,n的值(II)求(1+m)n(1-x)的展开式中有理项的系数和.22.(10分)函数,,实数为常数.(I)求的最大值;(II)讨论方程的实数根的个数.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】分析:由期望公式和方差公式列出的关系式,然后变形求解.详解:∵,∴随机变量的值只能为,∴,解得或,∴.故选D.点睛:本题考查离散型随机变量的期望与方差,解题关键是确定随机变量只能取两个值,从而再根据其期望与方差公式列出方程组,以便求解.2、B【解题分析】

通过联立方程直接求得交点坐标,从而判断图形形状.【题目详解】联立x2+(y-2)2=1与x2【题目点拨】本题主要考查圆与椭圆的交点问题,难度不大.3、C【解题分析】

设,,中,分别表示,最后表示求解长度.【题目详解】设,中,,,中,,解得:米.故选C.【题目点拨】本题考查了解三角形中有关长度的计算,属于基础题型.4、D【解题分析】

首先通过诱导公式,化简三个数,然后判断它们的正负性,最后利用商比法判断a,c的大小,最后选出正确答案.【题目详解】a=tan而ac=【题目点拨】本题考查了诱导公式、以及同角三角函数关系,以及商比法判断两数大小.在利用商比法时,要注意分母的正负性.5、B【解题分析】设,则,根据对称性,,则,即,故故选:B.6、A【解题分析】

根据复数的除法运算,即可求解,得到答案.【题目详解】由复数的运算,可得复数,故选A.【题目点拨】本题主要考查了复数的基本运算,其中解答中熟记的除法运算方法,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.7、A【解题分析】

根据三个数的特征,构造函数,求导,判断函数的单调性,利用函数的单调性可以判断出的大小关系.【题目详解】解:考查函数,则,在上单调递增,,,即,,故选A.【题目点拨】本题考查了通过构造函数,利用函数的单调性判断三个数大小问题,根据三个数的特征构造函数是解题的关键.8、B【解题分析】由三视图判断底面为等腰直角三角形,三棱锥的高为2,则,选B.【考点定位】三视图与几何体的体积9、A【解题分析】

P是底面上的动点,因此只要在底面上讨论即可,以为轴建立平面直角坐标系,设,根据已知列出满足的关系.【题目详解】如图,以为轴在平面内建立平面直角坐标系,设,由得,整理得,设直线与正方形的边交于点,则点在内部(含边界),易知,,∴,.故选A.【题目点拨】本题考查空间两点间的距离问题,解题关键是在底面上建立平面直角坐标系,把空间问题转化为平面问题去解决.10、D【解题分析】第一步,他进门,有7种选择;第二步,他出门,有7种选择.根据分步乘法计数原理可得他进出门的方案有7×7=49(种).11、B【解题分析】解:解:从这批产品中抽取4个,则事件总数为个,其中恰好有一个二等品的事件有个,根据古典概型的公式可知恰好有一个二等品的概率为12、C【解题分析】分析:根据题意,分析所给推理的三段论,找出大前提,小前提,结论,再判断正误即可得到答案.详解:根据题意,该推理的大前提:正弦函数是奇函数,正确;小前提是:是正弦函数,因为该函数不是正弦函数,故错误;结论:是奇函数,,故错误.故选:C.点睛:本题考查演绎推理的基本方法,关键是理解演绎推理的定义以及三段论的形式.二、填空题:本题共4小题,每小题5分,共20分。13、9【解题分析】

设,代入并利用辅助角公式运算即可得到最值.【题目详解】由已知,设,则,故.当时,取得最大值9.故答案为:9【题目点拨】本题考查利用椭圆的参数方程求函数的最值问题,考查学生的基本运算能力,是一道容易题.14、.【解题分析】分析:根据任意角的三角函数的定义,求得sin的值,再结合诱导公式即可得到结果.详解:∵角θ的终边经过点,∴x=,y=3,r=,则sin==.∴故答案为.点睛:本题主要考查任意角的三角函数的定义,考查了诱导公式,考查了计算能力,属于基础题.15、9.【解题分析】

将题目所给不等式分离常数,利用基本不等式求得的最大值.【题目详解】由得恒成立,而,故,所以的最大值为.【题目点拨】本小题主要考查不等式恒成立问题求解策略,考查利用基本不等式求最值,考查化归与转化的数学思想方法,属于中档题.16、【解题分析】试题分析:由双曲线方程可知渐近线方程为考点:双曲线方程及性质三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),,,;(2)证明见解析;(3)充要条件.【解题分析】

(1)根据题意,直接列出即可(2)利用的和的符号和最高次的相同,利用排除法可以证明。(3)利用(2)的结论完成(3)即可。【题目详解】(1)中的元素有,,,。(2)充分性:当时,显然成立。必要性:若=1,则若=,则若的值有个1,和个。不妨设2的次数最高次为次,其系数为1,则,说明只要最高次的系数是正的,整个式子就是正的,同理,只要最高次的系数是负的,整个式子就是负的,说明最高次的系数只能是0,就是说,即综上“”的充要条件是“”(3)等价于等价于由(2)得“=”的充要条件是“”即“=”是“”的充要条件【题目点拨】本题考查了数列递推关系等差数列与等比数列的通项公式求和公式,考查了推理能力与计算能力,属于难题.18、(1)分布列见解析.(2)分布列见解析;元.【解题分析】分析:(1)根据表格得到该超市水果日需求量(单位:千克)的分布列;(2)若A水果日需求量为140千克,则X=140×(15﹣10)﹣(150﹣140)×(10﹣8)=680元,则P(X=680)==0.1.若A水果日需求量不小于150千克,则X=150×(15﹣10)=750元,且P(X=750)=1﹣0.1=0.2.由此能求出X的分布列和数学期望E(X).详解:(1)的分布列为(2)若水果日需求量为千克,则元,且.若水果日需求量不小于千克,则元,且.故的分布列为元.点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是:“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布X~B(n,p)),则此随机变量的期望可直接利用这种典型分布的期望公式(E(X)=np)求得.19、(1);(2)【解题分析】

(1)将代入不等式,得到,再通过讨论的范围,即可求出结果;(2)先根据不等式有解,可得只需大于等于的最小值,进而可求出结果.【题目详解】(1)当时,不等式为,若,则,即,若,则,舍去,若,则,即,综上,不等式的解集为;(2)当且仅当时等号成立,题意等价于,,的取值范围为.【题目点拨】本题主要考查含绝对值不等式的解法,以及不等式成立的问题,根据含绝对值不等式的性质以及分类讨论的思想,即可求解,属于常考题型.20、(1)①②4,6.(2)证明见详解.【解题分析】

(1)①根据两个元素之差为3,结合集合的元素,即可求得;②根据题意要求,写出集合X中从小到大8个数中所有的差值(限定为正数)的可能,计算每个差值出现的次数,即可求得;(2)采用反证法,假设不存在满足条件的k,根据差数的范围推出矛盾即可.【题目详解】(1)①方程的解有:.②以下规定两数的差均为正,则:列出集合X的从小到大8个数中相邻两数的差:1,3,2,4,2,3,1;中间隔一数的两数差(即上一列差数中相邻两数和):4,5,6,6,5,4;中间相隔二数的两数差:6,9,8,9,6;中间相隔三数的两数差:10,11,11,10;中间相隔四数的两数差:12,14,12;中间相隔五数的两数差:15,15;中间相隔六数的两数差:16.这28个差数中,只有4出现3次、6出现4次,其余都不超过2次,所以k的可能取值有4,6.(2)证明:不妨设,记,,共13个差数.假设不存在满足条件的k,则这13个数中至多两个1、两个2、两个3、两个4、两个5、两个6,从而①又,这与①矛盾.故假设不成立,结论成立.即对任意一个X,存在正整数k,使得方程至少有三组不同的解.【题目点拨】本题考查集合新定义问题,涉及反证法的使用,本题的关键是要理解题意,小心计算,大胆求证.21、(1),.(2)0.【解题分析】分析:(1)先根据二项式系数性质得,解得n,再根据二项式展开式的通项公式得含x项的系数为,解得m,(2)先根据二项式展开式的通项公式得,再求的展开式有理项的系数和.详解:(1)由题意可知,,解得含项的系数为,(2)的展开项通项公式为的展开式有理项的系数和为0点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.22、(Ⅰ)(Ⅱ)见解析【解题分析】

(1)直接对函数进行求导,研究函数的单调性,求最大值;(2)对方程根的个数转化为函数零点个数,通过对参数进行分类讨论,利用函数的单调性、最值、零点存在定理等,判断函数图象与轴的交点个数.【题目详解】(Ⅰ)的导数为.在区间,,是增函数;在区间上,,是减函数.所以的最大

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论