2024届衡水市重点中学高二数学第二学期期末监测试题含解析_第1页
2024届衡水市重点中学高二数学第二学期期末监测试题含解析_第2页
2024届衡水市重点中学高二数学第二学期期末监测试题含解析_第3页
2024届衡水市重点中学高二数学第二学期期末监测试题含解析_第4页
2024届衡水市重点中学高二数学第二学期期末监测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届衡水市重点中学高二数学第二学期期末监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设函数,其中,,存在使得成立,则实数的值为()A.B.C.D.2.函数的递增区间为()A., B.C., D.3.已知函数,若方程有两个相异实根,且,则实数的值等于()A.-2或2 B.-2 C.2 D.04.用数学归纳法证明不等式“(,)”的过程中,由推导时,不等式的左边增加的式子是()A. B.C. D.5.现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完后结束的概率为()A. B. C. D.6.已知函数f(x)=ex(3x-1)-ax+a(a<1),若有且仅有两个整数xi(i=1,A.[-2e,1) B.[73e2,17.如图所示,在一个边长为2.的正方形AOBC内,曲和曲线围成一个叶形图阴影部分,向正方形AOBC内随机投一点该点落在正方形AOBC内任何一点是等可能的,则所投的点落在叶形图内部的概率是()A. B. C. D.8.变量满足约束条件,若的最大值为2,则实数等于()A.—2 B.—1 C.1 D.29.已知随机变量,若,则分别是()A.6和5.6 B.4和2.4 C.6和2.4 D.4和5.610.已知,,,则下列说法正确是()A. B.C.与的夹角为 D.11.已知函数,与的图象上存在关于轴对称的点,则实数的取值范围是()A. B. C. D.12.如图,点为正方体的中心,点为棱的中点,点为棱的中点,则空间四边形在该正方体的面上的正投影不可能是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的两条渐近线分别与抛物线的准线交于A,B两点.O为坐标原点.若△OAB的面积为2,则的值为_______.14.如图,已知中,点M在线段AC上,点P在线段BM上,且满足,若,则的值为__________.15.设集合,,则集合______.16.圆锥的母线长为,母线与旋转轴的夹角为,则该圆锥的体积为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)选修4-4:坐标系与参数方程.已知直线(为参数),曲线(为参数).(1)设与相交于两点,求;(2)曲线为(为参数),点是曲线上的一个动点,求它到直线的距离的最小值.18.(12分)某县教育局为了检查本县甲、乙两所学校的学生对安全知识的学习情况,在这两所学校进行了安全知识测试,随机在这两所学校各抽取20名学生的考试成绩作为样本,成绩大于或等于80分的为优秀,否则为不优秀,统计结果如图:甲校乙校(1)从乙校成绩优秀的学生中任选两名,求这两名学生的成绩恰有一个落在内的概率;(2)由以上数据完成下面列联表,并回答能否在犯错的概率不超过0.1的前提下认为学生的成绩与两所学校的选择有关。甲校乙校总计优秀不优秀总计19.(12分)现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.(=1\*ROMANI)求张同学至少取到1道乙类题的概率;(=2\*ROMANII)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是,答对每道乙类题的概率都是,且各题答对与否相互独立.用表示张同学答对题的个数,求的分布列和数学期望.20.(12分)如图,平面,在中,,,交于点,,,,.(1)证明:;(2)求直线与平面所成角的正弦值.21.(12分)如图,在边长为的正方形中,点是的中点,点是的中点,点是上的点,且.将△AED,△DCF分别沿,折起,使,两点重合于,连接,.(Ⅰ)求证:;(Ⅱ)试判断与平面的位置关系,并给出证明.22.(10分)设,.(1)证明:对任意实数,函数都不是奇函数;(2)当时,求函数的单调递增区间.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】试题分析:函数f(x)可以看作是动点M(x,lnx2)与动点N(A,2A)之间距离的平方,动点M在函数y=2lnx的图象上,N在直线y=2x的图象上,问题转化为求直线上的动点到曲线的最小距离,由y=2lnx得,y'==2,解得x=1,∴曲线上点M(1,0)到直线y=2x的距离最小,最小距离D=,则f(x)≥,根据题意,要使f()≤,则f()=,此时N恰好为垂足,由,解得考点:导数在最大值、最小值问题中的应用2、A【解题分析】分析:直接对函数求导,令导函数大于0,即可求得增区间.详解:,,增区间为.故答案为A.点睛:本题考查了导数在研究函数的单调性中的应用,需要注意的是函数的单调区间一定是函数的定义域的子集,因此求函数的单调区间一般下,先求定义域;或者直接求导,在定义域内求单调区间.3、C【解题分析】分析:利用导数法,可得当x=﹣1时,函数取极大值m+2,当x=1时,函数取极小值m﹣2,结合方程f(x)=0有两个相异实根x1,x2,且x1+x2<0,可得答案.详解:∵函数f(x)=x3﹣3x+m,∴f′(x)=3x2﹣3,令f′(x)=0,则x=±1,当x<﹣1,或x>1时,f′(x)>0,f(x)为增函数;当﹣1<x<1时,f′(x)<0,f(x)为减函数;故当x=﹣1时,函数取极大值m+2,当x=1时,函数取极小值m﹣2,又∵方程f(x)=0有两个相异实根x1,x2,且x1+x2<0,∴m﹣2=0,解得m=2,故选:C.点睛:本题考查的知识点是利用导数法研究函数的极值,方程根的个数判断,难度中档.对于函数的零点问题,它和方程的根的问题,和两个函数的交点问题是同一个问题,可以互相转化;在转化为两个函数交点时,如果是一个常函数一个含参的函数,注意让含参的函数式子尽量简单一些。4、D【解题分析】

把用替换后两者比较可知增加的式子.【题目详解】当时,左边,当时,左边,所以由推导时,不等式的左边增加的式子是,故选:D.【题目点拨】本题考查数学归纳法,掌握数学归纳法的概念是解题基础.从到时,式子的变化是数学归纳法的关键.5、C【解题分析】试题分析:将5张奖票不放回地依次取出共有种不同的取法,若活动恰好在第四次抽奖结束,则前三次共抽到2张中奖票,第四次抽到最后一张中奖票.共有种取法,∴考点:古典概型及其概率计算公式6、D【解题分析】

设g(x)=ex(3x﹣1),h(x)=ax﹣a,对g(x)求导,将问题转化为存在2个整数xi使得g(xi)在直线h(x)=ax﹣a的下方,求导数可得函数的极值,解g(﹣1)﹣h(﹣1)<0,g(﹣2)﹣h(﹣2)≥0,求得a的取值范围.【题目详解】设g(x)=ex(3x﹣1),h(x)=ax﹣a,则g′(x)=ex(3x+2),∴x∈(﹣∞,﹣23),g′(x)<0,g(xx∈(﹣23,+∞),g′(x)>0,g(x∴x=﹣23,取最小值-∴g(0)=﹣1<﹣a=h(0),g(1)﹣h(1)=2e>0,直线h(x)=ax﹣a恒过定点(1,0)且斜率为a,∴g(﹣1)﹣h(﹣1)=﹣4e﹣1+2a<0,∴a<2eg(﹣2)=﹣7e由g(﹣2)﹣h(﹣2)≥0,解得:a≥73故答案为[73故选D.【题目点拨】本题考查求函数的导数,利用导数判断函数的单调性和极值问题,涉及转化的思想,属于中档题.对于函数恒成立或者有解求参的问题,常用方法有:变量分离,参变分离,转化为函数最值问题;或者直接求函数最值,使得函数最值大于或者小于0;或者分离成两个函数,使得一个函数恒大于或小于另一个函数.7、C【解题分析】

欲求所投的点落在叶形图内部的概率,须结合定积分计算叶形图(阴影部分)平面区域的面积,再根据几何概型概率计算公式求解.【题目详解】联立得.由图可知基本事件空间所对应的几何度量,满足所投的点落在叶形图内部所对应的几何度量:(A).所以(A).故选:.【题目点拨】本题综合考查了几何概型及定积分在求面积中的应用,考查定积分的计算,意在考查学生对这些知识的理解掌握水平.8、C【解题分析】

将目标函数变形为,当取最大值,则直线纵截距最小,故当时,不满足题意;当时,画出可行域,如图所示,其中.显然不是最优解,故只能是最优解,代入目标函数得,解得,故选C.考点:线性规划.9、B【解题分析】分析:根据变量ξ~B(10,0.4)可以根据公式做出这组变量的均值与方差,随机变量η=8﹣ξ,知道变量η也符合二项分布,故可得结论.详解:∵ξ~B(10,0.4),∴Eξ=10×0.4=4,Dξ=10×0.4×0.6=2.4,∵η=8﹣ξ,∴Eη=E(8﹣ξ)=4,Dη=D(8﹣ξ)=2.4故选:B.点睛:本题考查变量的均值与方差,均值反映数据的平均水平,而方差反映数据的波动大小,属于基础题.方差能够说明数据的离散程度,期望说明数据的平均值,从选手发挥稳定的角度来说,应该选择方差小的.10、D【解题分析】

根据向量运算和向量夹角公式,向量模依次判断每个选项得到答案.【题目详解】,故,故错误;,故错误;,故,故,错误;,故,正确.故选:.【题目点拨】本题考查了向量数量积,向量夹角,向量模,意在考查学生的计算能力.11、A【解题分析】

根据题意,可以将原问题转化为方程在区间上有解,构造函数,利用导数分析的最大最小值,可得的值域,进而分析方程在区间上有解,必有,解之可得实数的取值范围.【题目详解】根据题意,若函数,与的图象上存在关于轴对称的点,则方程在区间上有解化简可得设,对其求导又由,在有唯一的极值点分析可得:当时,,为减函数,当时,,为增函数,故函数有最小值又由,比较可得,,故函数有最大值故函数在区间上的值域为若方程在区间有解,必有,则有则实数的取值范围是故选:A【题目点拨】本题考查在函数与方程思想下利用导数求最值进而表示参数取值范围问题,属于难题.12、C【解题分析】分析:根据空间四边形在正方体前后面、上下面和左右面上的正投影,即可得到正确的选项.详解:空间四边形在正方体前后面上的正投影是A选项;空间四边形在正方体前上下上的正投影是B选项;空间四边形在正方体左右面上的正投影是D选项,故选C.点睛:本题主要考查了平行投影和平行投影的作法的应用问题,主要同一图形在不同面上的投影不一定相同,属于基础题,着重考查了空间推理能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

分析:求出双曲线的两条渐近线方程与抛物线的准线方程,进而求出两点坐标,再由的面积为,列出方程列方程求解即可.详解:双曲线的两条渐近线方程,又抛物线的准线方程是,故两点的横坐标坐标分别是,又的面积为1,,得,故答案为.点睛:本题主要考查双曲线的几何性质以及抛物线的几何性质,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系14、-2【解题分析】.,化为,故答案为.15、【解题分析】

根据集合,,求出两集合的交集即可【题目详解】,故答案为【题目点拨】本题主要考查了集合交集及其运算,熟练掌握交集的定义是解本题的关键,属于基础题.16、【解题分析】

根据题意画出圆锥的轴截面图形,结合图形求出圆锥的底面圆半径和高,再计算圆锥的体积.【题目详解】如图所示,圆锥的母线,母线与旋转轴的夹角为,圆锥的底面圆半径为;高为;该圆锥的体积为.故答案为:.【题目点拨】本题考查圆锥的体积计算及圆锥侧展图,考查空间想象能力和运算求解能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)1;(2).【解题分析】分析:(1)由题意,,求得直线的普通方程,联立方程组,求得两点的坐标,即可求得的长;(2)根据曲线的方程,设点的坐标是,利用点到直线的距离公式,求得点到直线的距离,再利用三角函数的性质,即可求解结果.详解:(1)直线的普通方程为,的普通方程为.联立方程组,解得与的交点为,则.………5分(2)曲线为(为参数),故点的坐标是,从而点到直线的距离是,由此当时,取得最小值,且最小值为.…10分点睛:本题主要考查了参数方程与普通方程的互化,以及曲线的参数方程的应用,把直线和曲线的参数方程转化为普通方程,利用点到直线的距离公式求解是解答的关键,着重考查了推理与运算能力.18、(1);(2)在犯错的概率不超过0.1的前提下认为学生的成绩与两所学校的选择有关.【解题分析】分析:(1)根据频率分布直方图中矩形面积为1,求得a的值,再计算乙校成绩优秀的学生数,求出基本事件数,计算所求的概率值;(2)由题意填写列联表,计算,对照临界值得出结论.详解:(1)∵频率分布直方图中矩形面积为1成绩落在内的人数为成绩落在内的人数为从乙校成绩优秀的学生中任选两名的基本事件的总数为:两名学生的成绩恰有一个落在内的基本事件的个数为:则这两名学生的成绩恰有一个落在内的概率为:(2)由已知得列联表如下甲校乙校总计优秀11516不优秀91524总计202040所以在犯错的概率不超过0.1的前提下认为学生的成绩与两所学校的选择有关。点睛:本题考查了列联表与独立性检验的应用问题,也考查了频率分布直方图与概率的计算问题,是中档题.19、(=1\*ROMANI)(=2\*ROMANII)X0123P【解题分析】(=1\*ROMANI)解法一解法二(=2\*ROMANII)X所有可能取值为0,1,2,3.,,,所求的分布列为X0123P第一小问可以从两个方面去思考,一是间接法,就是张同学1道乙类题都没有取到的取法是多少?二是直接法,就是取一道乙类题和两道甲类体;两道乙类题和一道甲类体;三道乙类题。三种情况加起来就是共有多少种取法。第二问一是思考随机变量的所有可能取值,二是算出对应的概率,其中X=1和X=2要注意有两种情形。最后利用数学期望的公式求解。【考点定位】本题考查古典概型,随机变量的分布列和数学期望的定义。20、(1)证明见解析;(2).【解题分析】

过D作平行线DH,则可得两两垂直,以它们为坐标轴建立空间直角坐标,求出长,写出的坐标.求出相应向量,(1)由,证得垂直;(2)求出平面的法向量,直线与平面所成角的正弦值等于向量和夹角余弦值的绝对值.由向量的数量积运算易求.【题目详解】(1)过D作平行线DH,以D为原点,DB为x轴,DC为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论