版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省屯溪第一中学2024届高二数学第二学期期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若函数在处的导数为,则为A. B. C. D.02.若均为非负整数,在做的加法时各位均不进位(例如,),则称为“简单的”有序对,而称为有序数对的值,那么值为2964的“简单的”有序对的个数是()A.525 B.1050 C.432 D.8643.在的展开式中,记项的系数为,则+++=()A.45 B.60 C.120 D.2104.,,则的值为()A. B. C. D.5.设全集,集合,,则()A. B. C. D.6.下列说法正确的是()A.命题“若,则”的否命题为:“若,则”B.已知是R上的可导函数,则“”是“x0是函数的极值点”的必要不充分条件C.命题“存在,使得”的否定是:“对任意,均有”D.命题“角α的终边在第一象限角,则α是锐角”的逆否命题为真命题7.已知,则A. B. C. D.8.如图,可导函数在点处的切线方程为,设,为的导函数,则下列结论中正确的是()A.,是的极大值点B.,是的极小值点C.,不是的极值点D.,是是的极值点9.将5名学生分到三个宿舍,每个宿舍至少1人至多2人,其中学生甲不到宿舍的不同分法有()A.18种 B.36种 C.48种 D.60种10.双曲线x2a2A.y=±2x B.y=±3x11.某车间加工零件的数量x与加工时间y的统计数据如图:现已求得上表数据的回归方程中的值为0.9,则据此回归模型可以预测,加工100个零件所需要的加工时间约为()零件个数x(个)102030加工时间y(分钟)213039A.112分钟 B.102分钟 C.94分钟 D.84分钟12.函数在点处的切线方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.一场晚会共有7个节目,要求第一个节目不能排,节目必须排在前4个,节目必须排在后3个,则有_______种不同的排法(用数字作答).14.在长方体中,,,,那么顶点到平面的距离为______.15.已知随机变量X服从正态分布N(0,σ2)且P(-2≤X≤0)=0.4,则P(X>2)=____________.16.已知函数有四个零点,则实数的取值范围是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,已知,动点满足,记动点的轨迹为.(1)求的方程;(2)若直线与交于两点,且,求的值.18.(12分)已知函数=│x+1│–│x–2│.(1)求不等式≥1的解集;(2)若不等式≥x2–x+m的解集非空,求实数m的取值范围.19.(12分)已知曲线上的最高点为,该最高点到相邻的最低点间曲线与轴交于一点,求函数解析式,并求函数在上的值域.20.(12分)已知函数.(1)当时,求函数的单调区间和极值;(2)若在上是单调函数,求实数的取值范围.21.(12分)已知m是实数,关于x的方程E:x2﹣mx+(2m+1)=1.(1)若m=2,求方程E在复数范围内的解;(2)若方程E有两个虚数根x1,x2,且满足|x1﹣x2|=2,求m的值.22.(10分)在中,内角所对的边分别为,已知的面积为.(1)求和的值;(2)求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
根据函数的导数的极限定义进行转化求解即可.【题目详解】,故选:B.【题目点拨】本题主要考查函数的导数的计算,结合导数的极限定义进行转化是解决本题的关键.2、B【解题分析】分析:由题意知本题是一个分步计数原理,第一位取法两种为0,1,2,第二位有10种从0,1,2,3,4,5,6,7,8,9第三位有7种,0,1,2,3,4,5,6第四为有5种,0,1,2,3,4根据分步计数原理得到结果.详解:由题意知本题是一个分步计数原理,第一位取法两种为0,12第二位有10种从0,1,2,3,4,5,6,7,8,9第三位有7种,0,1,2,3,4,5,6第四为有5种,0,1,23,4根据分步计数原理知共有3×10×7×5=1050个故答案为:B.点睛:解答排列、组合问题的角度:解答排列、组合应用题要从“分析”、“分辨”、“分类”、“分步”的角度入手.(1)“分析”就是找出题目的条件、结论,哪些是“元素”,哪些是“位置”;(2)“分辨”就是辨别是排列还是组合,对某些元素的位置有、无限制等;(3)“分类”就是将较复杂的应用题中的元素分成互相排斥的几类,然后逐类解决;(4)“分步”就是把问题化成几个互相联系的步骤,而每一步都是简单的排列、组合问题,然后逐步解决.3、C【解题分析】
由题意依次求出x3y0,x2y1,x1y2,x0y3,项的系数,求和即可.【题目详解】(1+x)6(1+y)4的展开式中,含x3y0的系数是:=1.f(3,0)=1;含x2y1的系数是=60,f(2,1)=60;含x1y2的系数是=36,f(1,2)=36;含x0y3的系数是=4,f(0,3)=4;∴f(3,0)+f(2,1)+f(1,2)+f(0,3)=11.故选C.【题目点拨】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.4、B【解题分析】
利用同角三角函数的平方关系计算出的值,再利用诱导公式可得出的值.【题目详解】,,且,由诱导公式得,故选B.【题目点拨】本题考查同角三角函数的平方关系,同时也考查了诱导公式的应用,在利用同角三角函数基本关系求值时,先要确定角的象限,确定所求三角函数值的符号,再结合相应的公式进行计算,考查运算求解能力,属于基础题.5、A【解题分析】
先化简集合A,B,再判断每一个选项得解.【题目详解】∵,,由此可知,,,,故选:A.【题目点拨】本题主要考查集合的化简和运算,意在考查学生对这些知识的理解掌握水平,属于基础题.6、B【解题分析】试题分析:对于A,命题“若,则”的否命题为:“若,则”,不满足否命题的定义,所以A不正确;对于B,已知是R上的可导函数,则“”函数不一定有极值,“是函数的极值点”一定有导函数为,所以已知是上的可导函数,则“”是“是函数的极值点”的必要不充分条件,正确;对于C,命题“存在,使得”的否定是:“对任意,均有”,不满足命题的否定形式,所以不正确;对于D,命题“角的终边在第一象限角,则是锐角”是错误命题,则逆否命题为假命题,所以D不正确;故选B.考点:命题的真假判断与应用.7、C【解题分析】
根据已知求出,再求.【题目详解】因为,故,从而.故选C【题目点拨】本题主要考查诱导公式和同角的三角函数关系,考查二倍角的正弦公式,意在考查学生对这些知识的理解掌握水平,属于基础题.8、B【解题分析】
由图判断函数的单调性,结合为在点P处的切线方程,则有,由此可判断极值情况.【题目详解】由题得,当时,单调递减,当时,单调递增,又,则有是的极小值点,故选B.【题目点拨】本题通过图象考查导数的几何意义、函数的单调性与极值,分析图象不难求解.9、D【解题分析】试题分析:当甲一人住一个寝室时有:种,当甲和另一人住一起时有:,所以有种.考点:排列组合.10、A【解题分析】分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.详解:∵e=因为渐近线方程为y=±bax点睛:已知双曲线方程x2a211、B【解题分析】
由已知求得样本点的中心的坐标,代入线性回归方程求得,取求得值即可。【题目详解】解:所以样本的中心坐标为(20,30),代入,得,取,可得,故选:B。【题目点拨】本题考查线性回归方程,明确线性回归方程恒过样本点的中心是关键,是基础题.12、B【解题分析】
首先求出函数在点处的导数,也就是切线的斜率,再利用点斜式求出切线方程..【题目详解】∵,∴切线斜率,又∵,∴切点为,∴切线方程为,即.故选B.【题目点拨】本题考查导数的几何意义,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1224【解题分析】
从G排在前4个和后3个两种情况来讨论,当排在前4个时,根据题的条件,求出有种排法,当排在后三个时,根据条件,求得有种排法,再根据分类计数原理求得结果.【题目详解】当排在前4个时,A也排在前四个,有种选择,此时D排在后三个有种选择,其余4人,共有种排法,此时共有种排法;当排在后三个时,D也排在后三个,A也排在前四个,此时共有种排法,所以共有种排法,故答案是:1224.【题目点拨】该题考查的是有关应用排列解决实际问题,涉及到的知识点有排列数,分类计数原理,分步计数原理,属于简单题目.14、【解题分析】
作出图形,计算出四面体的体积,并计算出的面积,然后利用等体积法计算出点到平面的距离.【题目详解】如下图所示:三棱锥的体积为.在中,由勾股定理得,同理可得,取的中点,连接,则,由勾股定理得.所以,的面积为.设点到平面的距离为,则,解的.因此,点到平面的距离为.故答案为:.【题目点拨】本题考查点到平面距离的计算,常用的方法有等体积法、空间向量法,考查计算能力,属于中等题.15、0.1【解题分析】随机变量服从正态分布,且,故答案为.16、【解题分析】
由题意可知是偶函数,根据对称性问题转化为直线与曲线有两个交点.【题目详解】因为是偶函数,根据对称性,在上有两个不同的实根,即在上有两个不同的实根,等价转化为直线与曲线有两个交点,而,则当时,,当时,,所以函数在上是减函数,在上是增函数,于是,故故答案为:【题目点拨】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】分析:(1)设点的坐标为,由平面向量数量积的坐标运算法则结合题意可得的方程为.(2)由(1)知为圆心是,半径是的圆,利用点到直线距离公式结合圆的弦长公式可得,解得.详解:(1)设点的坐标为,则,所以,即,所以的方程为.(2)由(1)知为圆心是,半径是的圆,设到直线的距离为,则,因为,所以,由点到直线的距离公式得,解得.点睛:处理直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.18、(1);(2).【解题分析】
(1)由于f(x)=|x+1|﹣|x﹣2|,解不等式f(x)≥1可分﹣1≤x≤2与x>2两类讨论即可解得不等式f(x)≥1的解集;(2)依题意可得m≤[f(x)﹣x2+x]max,设g(x)=f(x)﹣x2+x,分x≤1、﹣1<x<2、x≥2三类讨论,可求得g(x)max,从而可得m的取值范围.【题目详解】解:(1)∵f(x)=|x+1|﹣|x﹣2|,f(x)≥1,∴当﹣1≤x≤2时,2x﹣1≥1,解得1≤x≤2;当x>2时,3≥1恒成立,故x>2;综上,不等式f(x)≥1的解集为{x|x≥1}.(2)原式等价于存在x∈R使得f(x)﹣x2+x≥m成立,即m≤[f(x)﹣x2+x]max,设g(x)=f(x)﹣x2+x.由(1)知,g(x),当x≤﹣1时,g(x)=﹣x2+x﹣3,其开口向下,对称轴方程为x1,∴g(x)≤g(﹣1)=﹣1﹣1﹣3=﹣5;当﹣1<x<2时,g(x)=﹣x2+3x﹣1,其开口向下,对称轴方程为x∈(﹣1,2),∴g(x)≤g()1;当x≥2时,g(x)=﹣x2+x+3,其开口向下,对称轴方程为x2,∴g(x)≤g(2)=﹣4+2+3=1;综上,g(x)max,∴m的取值范围为(﹣∞,].【题目点拨】本题考查绝对值不等式的解法,去掉绝对值符号是解决问题的关键,突出考查分类讨论思想与等价转化思想、函数与方程思想的综合运用,属于难题.19、,值域为【解题分析】
根据已知得到周期,由此求得,根据最值求得,根据函数的最高点求得,由此求得函数的解析式.由的取值范围,求得的取值范围,进而求得函数在给定区间上的值域.【题目详解】依题意知,由最大值得.由函数最高点得,故,由,得,故.当时,,所以,即函数的值域为【题目点拨】本小题主要考查三角函数解析式的求法,考查三角函数值域的求法,属于中档题.20、(1)函数的单调递减区间是,单调递增区间是,极小值是(2)【解题分析】
易知,函数的定义域为当时,当x变化时,和的值的变化情况如下表:x10递减极小值递增由上表可知,函数的单调递减区间是,单调递增区间是,极小值是由,得又函数为上单调函数,若函数为上的单调增函数,则在上恒成立,即不等式在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度仓储服务合同标的为货物存储与管理的服务
- 2024年度广告投放合同:广告公司为客户在指定媒体投放广告
- 续约半年合同范本
- 2024版国际货物买卖合同范本
- 通讯劳务合同范本
- 2024年度版权使用许可合同侵权责任判定
- 负载均衡技术-第1篇
- 二零二四年度新能源开发利用合同标的
- 饼干的制作课程设计
- 满意度与质量关联研究
- 国开(浙江)2024年秋《中国建筑史(本)》形考作业1-4答案
- 2024新能源光伏电站运行规程和检修规程
- 创新创业创造:职场竞争力密钥智慧树知到期末考试答案章节答案2024年上海对外经贸大学
- 医院检验科实验室生物安全程序文件SOP
- 岗位竞聘课件(完美版)
- 小学英语写作教学的思考与实践 桂婷婷
- “以德育心,以心育德”
- 封条模板A4直接打印版
- 快递业“最后一公里”配送模式分析——以顺丰快递为例
- 艰辛与快乐并存-压力与收获同在——我的课题研究故事
- 中国钢材与国际钢材材质对照表
评论
0/150
提交评论