版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省许昌市示范初中2024届高二数学第二学期期末经典模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.有6名学生,其中有3名会唱歌,2名会跳舞,1名既会唱歌又会跳舞,现从中选出2名会唱歌的,1名会跳舞的,去参加文艺演出,求所有不同的选法种数为()A.18 B.15 C.16 D.252.已知定义在上的函数满足,且函数在上是减函数,若,,,则,,的大小关系为()A. B. C. D.3.对具有相关关系的变量,有一组观测数据,其回归直线方程,且,,则()A. B. C. D.4.设复数,在复平面内的对应点关于虚轴对称,,则()A.-5 B.5 C.-4+i D.-4-i5.若复数满足,则的虚部为()A. B. C. D.6.已知集合2,,3,,则A. B. C. D.2,3,7.如果点位于第三象限,那么角所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.已知函数是定义在上的函数,且满足,其中为的导数,设,,,则、、的大小关系是A. B. C. D.9.已知随机变量,且,则A. B. C. D.10.执行如图所示的程序框图,若输入的值为,则输出的的值为()A. B. C. D.11.若函数且在上既是奇函数又是增函数,则的图象是()A. B.C. D.12.在体育选修课排球模块基本功发球测试中,计分规则如下满分为10分:①每人可发球7次,每成功一次记1分;②若连续两次发球成功加分,连续三次发球成功加1分,连续四次发球成功加分,以此类推,,连续七次发球成功加3分假设某同学每次发球成功的概率为,且各次发球之间相互独立,则该同学在测试中恰好得5分的概率是(
)A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.x2+1x3514.在四面体中,,已知,,且,则四面体的体积的最大值为_______.15.展开二项式,其常数项为_________.16.已知复数z满足(1+2i)•(1+z)=﹣7+16i,则z的共轭复数_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)为调查某小区居民的“幸福度”.现从所有居民中随机抽取16名,如图所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶),若幸福度分数不低于8.5分,则称该人的幸福度为“幸福”.(1)求从这16人中随机选取3人,至少有2人为“幸福”的概率;(2)以这16人的样本数据来估计整个小区的总体数据,若从该小区(人数很多)任选3人,记表示抽到“幸福”的人数,求的分布列及数学期望和方差.18.(12分)已知向量,设函数(1)求的最小正周期(2)求函数的单调递减区间(3)求在上的最大值和最小值19.(12分)已知椭圆C:,点P(0,1).(1)过P点作斜率为k(k>0)的直线交椭圆C于A点,求弦长|PA|(用k表示);(2)过点P作两条互相垂直的直线PA,PB,分别与椭圆交于A、B两点,试问:直线AB是否经过一定点?若存在,则求出定点,若不存在,则说明理由?20.(12分)选修4-4:坐标系与参数方程以直角坐标系的原点为极点,轴非负半轴为极轴建立极坐标系,已知曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)若直线的参数方程为(为参数),设点,直线与曲线相交于两点,求的值.21.(12分)为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:性别
是否需要志愿者
男
女
需要
40
30
不需要
160
270
(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)请根据上面的数据分析该地区的老年人需要志愿者提供帮助与性别有关吗22.(10分)设λ是正实数,(1+λx)20的二项展开式为a0+a1x+a2x2+…+a20x20,其中a0,a1,…,a20,…,均为常数(1)若a3=12a2,求λ的值;(2)若a5≥an对一切n∈{0,1,…,20}均成立,求λ的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】名会唱歌的从中选出两个有种,名会跳舞的选出名有种选法,但其中一名既会唱歌又会跳舞的有一个,两组不能同时用他,共有种,故选B.2、B【解题分析】
利用函数奇偶性和单调性可得,距离y轴近的点,对应的函数值较小,可得选项.【题目详解】因为函数满足,且函数在上是减函数,所以可知距离y轴近的点,对应的函数值较小;,且,所以,故选B.【题目点拨】本题主要考查函数性质的综合应用,侧重考查数学抽象和直观想象的核心素养.3、A【解题分析】
根据,,求出样本点的中心,代入回归直线方程,即可求解.【题目详解】由题:,,所以样本点的中心为,该点必满足,即,所以.故选:A【题目点拨】此题考查根据已知数据求回归直线方程,关键在于准确求出样本点的中心,根据样本点的中心在回归直线上求解参数.4、A【解题分析】试题分析:由题意,得,则,故选A.考点:1、复数的运算;2、复数的几何意义.5、A【解题分析】
利用复数的乘法法则将复数表示为一般形式,可得出复数的虚部.【题目详解】,因此,复数的虚部为,故选A.【题目点拨】本题考查复数的概念与复数的乘法运算,对于复数问题,一般是利用复数的四则运算将复数表示为一般形式,进而求解,考查计算能力,属于基础题.6、B【解题分析】
直接根据交集的定义求解即可.【题目详解】因为集合2,,3,,所以,根据交集的定义可得,故选B.【题目点拨】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合且属于集合的元素的集合.7、B【解题分析】
由二倍角的正弦公式以及已知条件得出和的符号,由此得出角所在的象限.【题目详解】由于点位于第三象限,则,得,因此,角为第二象限角,故选B.【题目点拨】本题考查角所在象限的判断,解题的关键要结合已知条件判断出角的三角函数值的符号,利用“一全二正弦,三切四余弦”的规律判断出角所在的象限,考查推理能力,属于中等题.8、A【解题分析】
构造函数,根据的单调性得出结论.【题目详解】解:令,则,在上单调递增,又,,即,即故选:.【题目点拨】本题考查了导数与函数的单调性,考查函数单调性的应用,属于中档题.9、B【解题分析】
根据正态分布的对称性即可得到答案.【题目详解】由于,故选B.【题目点拨】本题主要考查正态分布中概率的计算,难度不大.10、B【解题分析】开始运行,,满足条件,,;第二次运行,,满足条件,s=1+1=1.i=3;第三次运行,,满足条件,,;第四次运行,,满足条件,,;第五次运行,,满足条件,,;第六次运行,,满足条件,,,不满足条件,程序终止,输出,故选B.11、D【解题分析】
根据题意先得到,,判断其单调性,进而可求出结果.【题目详解】因为函数且在上是奇函数,所以所以,,又因为函数在上是增函数,所以,所以,它的图象可以看作是由函数向左平移一个单位得到,故选D.【题目点拨】本题主要考查函数的奇偶性与单调性以及函数图象变换,熟记函数性质即可,属于常考题型.12、B【解题分析】
明确恰好得5分的所有情况:发球四次得分,有两个连续得分和发球四次得分,有三个连续得分,分别求解可得.【题目详解】该同学在测试中恰好得5分有两种情况:四次发球成功,有两个连续得分,此时概率;四次发球成功,有三个连续得分,分为连续得分在首尾和不在首尾两类,此时概率,所求概率;故选B.【题目点拨】本题主要考查相互独立事件的概率,题目稍有难度,侧重考查数学建模和数学运算的核心素养.二、填空题:本题共4小题,每小题5分,共20分。13、10;32【解题分析】
x2T由10-5r=0得r=2,故展开式中常数项为C52=10;取x=114、【解题分析】
作与,连接,说明与都在以为焦点的椭球上,且都垂直与焦距,,取BC的中点F,推出当是等腰直角三角形时几何体的体积最大,求解即可.【题目详解】解:作与,连接,则平面,,由题意,与都在以为焦点的椭球上,且都垂直与焦距且垂足为同一点E,显然与全等,所以,取BC的中点F,,要四面体ABCD的体积最大,因为AD是定值,只需三角形EBC面积最大,因为BC是定值,所以只需EF最大即可,当是等腰直角三角形时几何体的体积最大,,,,所以几何体的体积为:,故答案为:.【题目点拨】本题考查棱锥的体积,考查空间想象能力以及计算能力,是中档题.15、【解题分析】
利用二项展开式通项,令的指数为零,求出参数的值,再代入通项可得出二项式展开式的常数项.【题目详解】二项式展开式的通项为,令,得.所以,二项式展开式的常数项为,故答案为:.【题目点拨】本题考查二项展开式中常数项的计算,解题时要充分利用二项式展开式通项,利用的指数来求解,考查运算求解能力,属于基础题.16、4﹣6i【解题分析】
根据复数的乘除法运算法则求得复数,再根据共轭复数的概念可得答案.【题目详解】由(1+2i)•(1+z)=﹣7+16i,得,所以.故答案为:.【题目点拨】本题考查了复数的乘除法运算法则,考查了共轭复数的概念,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)的分布列见解析;数学期望为;方差为【解题分析】
首先由茎叶图统计出“幸福”的人数和其他人数,再计算概率.由茎叶图知任选一人,该人幸福度为“幸福”的概率为,知道在该小区中任选一人该人幸福度为“幸福”的概率为,再计算即可.【题目详解】(1)由茎叶图可知,抽取的16人中“幸福”的人数有12人,其他的有4人;记“从这16人中随机选取3人,至少有2人是“幸福”,”为事件.由题意得(2)由茎叶图知任选一人,该人幸福度为“幸福”的概率为,的可能取值为0,1,2,3,显然则;;;;所以的分布列为0123【题目点拨】本题考查茎叶图、样本估计总体、分布列、数学期望,属于基础题.18、(1);(2);(3)最大值为1,最小值为【解题分析】
(1)先根据向量数量积坐标表示得,再根据二倍角公式以及配角公式得,最后根据正弦函数性质求周期,(2)根据正弦函数单调性得,解得结果,(3)先根据自变量范围得,再根据得最值.【题目详解】解:(1)由题意得【题目点拨】三角恒等变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为的形式再借助三角函数图象研究性质,解题时注意观察角、函数名、结构等特征.19、(1);(2)直线AB过定点.【解题分析】
(1)先由题意得到直线PA的方程,联立直线与椭圆,得到A点坐标,再由弦长公式,即可求出结果;(2)先由题意,得到,直线的斜率必存在,设直线为,联立直线与椭圆方程,根据韦达定理,得到,再由,结合题意,求出,进而可得出结果.【题目详解】解:(1)把代入得:,所以(2)由题意可以,直线的斜率必存在,设直线为,有,所以,即直线AB过定点【题目点拨】本题主要考查椭圆的弦长,以及椭圆中的定点问题,熟记椭圆的标准方程以及椭圆的简单性质,即可求解,属于常考题型.20、(1);(2).【解题分析】试题分析:(1)极坐标方程化为直角坐标方程;(2)联立直线线l的参数方程与曲线C方程,巧解韦达定理表示,解得其值.试题解析:(1)由曲线C的原极坐标方程可得,化成直角方程为.(2)联立直线线l的参数方程与曲线C方程可得,整理得,∵,于是点P在AB之间,∴.点睛:过定点P0(x0,y0),倾斜角为α的直线参数方程的标准形式为(t为参数),t的几何意义是直线上的点P到点P0(x0,y0)的数量,即t=|PP0|时为距离.使用该式时直线上任意两点P1,P2对应的参数分别为t1,t2,则|P1P2|=|t1-t2|,P1P2的中点对应的参数为(t1+t2)21、(1);(2)有99%的把握认为该地区的老年人是否需要帮助与性别有关.【解题分析】试题分析:(1)由列联表可知调查的500位老年人中有位需要志愿者提供帮助,两个数据求比值得到该地区老年人中需要帮助的老年人的比例的估算值;(2)根据列联表所给的数据,代入随机变量的观测值公式,得到观测值的结果,把观测值的结果与临界值进行比较,看出有多大把握说该地区的老年人是否需要帮助与性别有关.试题解析:解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估算值为(2)根据表中数据计算得:。由于9.967>6.635,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关。考点:独立性检验.22、(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 产品质量持续改进培训课件
- 电子产品回收处理标准
- 单病种临床路径管理制度
- 智能小区物联网应用系统
- 《Excel数据获取与处理实战》 课件 陈青 第3、4章 数据的输入、工作表的格式化
- 溶剂泄露应急处置
- GMP基础知识培训
- 病从口入教案反思
- 胸腔闭式引流器的护理
- 城市娱乐设施建筑平房施工合同
- 大班科学《红薯现形记》课件
- GB/T 43336-2023舵轮控制系统通用技术条件
- JGJT294-2013 高强混凝土强度检测技术规程
- 2022-2023学年天津市某中学高三上学期第二次月考英语试题(解析版)
- 扬州某校2023-2024苏教版五年级上册数学期中课堂练习及答案
- 高级职称竞聘PPT
- 《数字影音处理》课程标准
- 电动叉车堆垛车日常点检表
- 2022年1月浙江高考读后续写分析课件-2023届高三英语写作专项突破
- 危险化学品和烟花爆竹安全管理
- 山东航空招飞报名表
评论
0/150
提交评论