版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省马鞍山含山高二数学第二学期期末质量跟踪监视试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知两个正态分布密度函数的图象如图所示,则()A. B.C. D.2.已知全集U=Z,,B={-1,0,1,2},则图中的阴影部分所表示的集合等于()A.{-1,2} B.{-1,0} C.{0,1} D.{1,2}3.已知函数f(x)=ex(3x-1)-ax+a(a<1),若有且仅有两个整数xi(i=1,A.[-2e,1) B.[73e2,14.在中,,若,则A. B. C. D.5.椭圆的左焦点为,若关于直线的对称点是椭圆上的点,则椭圆的离心率为()A. B. C. D.6.已知复数在复平面内对应的点在第一象限,则实数m的取值范围是()A. B. C. D.7.椭圆的长轴长为()A.1 B.2 C. D.8.甲、乙、丙三位同学站成一排照相,则甲、丙相邻的概率为()A. B. C. D.9.已知O为坐标原点,点F1、F2分别为椭圆C:x24+y23=1的左、右焦点,A为椭圆C上的一点,且A.32 B.34 C.510.已知集合,,且,则实数的取值范围为().A. B.C. D.11.由曲线,直线,和轴所围成平面图形的面积为()A. B. C. D.12.已知复数满足,则共轭复数()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知幂函数的图象过点,则______.14.若某学校要从5名男同学和2名女同学中选出3人参加社会考察活动,则选出的同学中男女生均不少于1名的概率是_____.15.已知四边形为矩形,,为的中点,将沿折起,得到四棱锥,设的中点为,在翻折过程中,得到如下有三个命题:①平面,且的长度为定值;②三棱锥的最大体积为;③在翻折过程中,存在某个位置,使得.其中正确命题的序号为__________.(写出所有正确结论的序号)16.已知某程序框图如图所示,则执行该程序后输出的结果是_____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)(.在一次购物抽奖活动中,假设某10张券中有一等奖奖券1张,可获价值50元的奖品;有二等奖奖券3张,每张可获价值10元的奖品;其余6张没奖.某顾客从此10张奖券中任抽2张,求:(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X(元)的概率分布列.18.(12分)2016年10月16日,在印度果阿出席金砖国家领导人第八次会议时,发表了题为《坚定信心,共谋发展》的重要讲话,引起世界各国的关注,为了了解关注程度,某机构选取“70后”和“80后”两个年龄段作为调查对象,进行了问卷调查,共调查了120名“80后”,80名“70后”,其中调查的“80后”有40名不关注,其余的全部关注;调查的“70”后有10人不关注,其余的全部关注.(1)根据以上数据完成下列2×2列联表:关注不关注合计“80后”“70后”合计(2)根据2×2列联表,能否在犯错误的概率不超过0.001的前提下,认为“关注与年龄段有关”?请说明理由。参考公式:K2=(n=a+b+c+d)附表:P(K2≥k0)0.500.400.250.150.100.050.0250.0100.0050.001k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.82819.(12分)已知函数.(1)讨论的单调性;(2)如果,求的取值范围.20.(12分)设锐角三角形ABC的内角A、B、C的对边分别为a、b、c,.(1)求B的大小.(2)若,,求b.21.(12分)将前12个正整数构成的集合中的元素分成四个三元子集,使得每个三元子集中的三数都满足:其中一数等于另外两数之和,试求不同的分法种数.22.(10分)在平面直角坐标系中,已知直线的参数方程为(为参数).以坐标原点为极点,以坐标原点为极点,轴的非负半轴为极轴,取相同的长度单位建立极坐标系,曲线的极坐标方程为.(Ⅰ)求直线的普通方程和曲线的直角坐标方程;(Ⅱ)若曲线上的点到直线的最大距离为6,求实数的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
正态曲线关于对称,且越大图象越靠近右边,第一个曲线的均值比第二个图象的均值小,又有越小图象越瘦高,得到正确的结果.【题目详解】正态曲线是关于对称,且在处取得峰值,由图易得,故的图象更“瘦高”,的图象更“矮胖”,则.故选A.【题目点拨】本题考查正态分布曲线的特点及曲线所表示的意义,考查密度函数中两个特征数均值和标准差对曲线的位置和形状的影响,是一个基础题.2、A【解题分析】
试题分析:图中的阴影部分所表示的集合为,故选A.考点:集合的运算3、D【解题分析】
设g(x)=ex(3x﹣1),h(x)=ax﹣a,对g(x)求导,将问题转化为存在2个整数xi使得g(xi)在直线h(x)=ax﹣a的下方,求导数可得函数的极值,解g(﹣1)﹣h(﹣1)<0,g(﹣2)﹣h(﹣2)≥0,求得a的取值范围.【题目详解】设g(x)=ex(3x﹣1),h(x)=ax﹣a,则g′(x)=ex(3x+2),∴x∈(﹣∞,﹣23),g′(x)<0,g(xx∈(﹣23,+∞),g′(x)>0,g(x∴x=﹣23,取最小值-∴g(0)=﹣1<﹣a=h(0),g(1)﹣h(1)=2e>0,直线h(x)=ax﹣a恒过定点(1,0)且斜率为a,∴g(﹣1)﹣h(﹣1)=﹣4e﹣1+2a<0,∴a<2eg(﹣2)=﹣7e由g(﹣2)﹣h(﹣2)≥0,解得:a≥73故答案为[73故选D.【题目点拨】本题考查求函数的导数,利用导数判断函数的单调性和极值问题,涉及转化的思想,属于中档题.对于函数恒成立或者有解求参的问题,常用方法有:变量分离,参变分离,转化为函数最值问题;或者直接求函数最值,使得函数最值大于或者小于0;或者分离成两个函数,使得一个函数恒大于或小于另一个函数.4、A【解题分析】
根据平面向量的线性运算法则,用、表示出即可.【题目详解】即:本题正确选项:【题目点拨】本题考查平面向量的加法、减法和数乘运算,属于基础题.5、A【解题分析】
利用点关于直线的对称点,且A在椭圆上,得,即得椭圆C的离心率;【题目详解】∵点关于直线的对称点A为,且A在椭圆上,即,∴,∴椭圆C的离心率.故选A.【题目点拨】本题主要考查椭圆的离心率,属于基础题.6、A【解题分析】
由实部虚部均大于0联立不等式组求解.【题目详解】解:复数在复平面内对应的点在第一象限,,解得.实数的取值范围是.故选:.【题目点拨】本题考查复数的代数表示法及其几何意义,考查不等式组的解法,是基础题.7、B【解题分析】
将椭圆方程化成标准式,根据椭圆的方程可求,进而可得长轴.【题目详解】解:因为,所以,即,,所以,故长轴长为故选:【题目点拨】本题主要考查了椭圆的定义的求解及基本概念的考查,属于基础题.8、C【解题分析】分析:通过枚举法写出三个人站成一排的所有情况,再找出其中甲、丙相邻的情况,由此能求出甲、丙相邻的概率.详解:三人站成一排,所有站法有:(甲乙丙)、(甲丙乙)、(乙甲丙)、(乙丙甲)、(丙甲乙)、(丙乙甲)共6种,其中甲、丙相邻有4种,所以,甲、丙相邻的概率为.故选C.点睛:本题考查古典概型的概率的求法,解题时要注意枚举法的合理运用.9、B【解题分析】
根据AF2⊥F1F2且O为F1【题目详解】如下图所示:由AF2⊥F1∵O为F1F2中点∴OB为ΔA又AF2本题正确选项:B【题目点拨】本题考查椭圆几何性质的应用,关键是能够熟练掌握椭圆通径长和对称性,属于基础题.10、C【解题分析】
由已知求得,再由,即可求得的范围,得到答案.【题目详解】由题意,集合,,可得,又由,所以.故选C.【题目点拨】本题主要考查了集合的混合运算,以及利用集合的运算求解参数的范围,其中解答中熟记集合基本运算方法是解答的关键,着重考查了推理与运算能力,属于基础题.11、B【解题分析】
利用定积分表示面积,然后根据牛顿莱布尼茨公式计算,可得结果.【题目详解】,故选:B【题目点拨】本题主要考查微积分基本定理,熟练掌握基础函数的导函数以及牛顿莱布尼茨公式,属基础题.12、D【解题分析】
先利用复数的乘法将复数表示为一般形式,然后利用共轭复数的定义得出.【题目详解】,因此,,故选D.【题目点拨】本题考查复数的乘法运算以及共轭复数的概念,解复数相关的问题,首先利用复数四则运算性质将复数表示为一般形式,然后针对实部和虚部求解,考查计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、3【解题分析】
先利用待定系数法代入点的坐标,求出幂函数的解析式,再求的值.【题目详解】设,由于图象过点,得,,,故答案为3.【题目点拨】本题考査幂函数的解析式,以及根据解析式求函数值,意在考查对基础知识的掌握与应用,属于基础题.14、【解题分析】
选出的男女同学均不少于1名有两种情况:1名男生2名女生和2名男生1名女生,根据组合数公式求出数量,再用古典概型计算公式求解.【题目详解】从5名男同学和2名女同学中选出3人,有种选法;选出的男女同学均不少于1名,有种选法;故选出的同学中男女生均不少于1名的概率:.【题目点拨】本题考查排列组合和古典概型.排列组合方法:1、直接考虑,适用包含情况较少时;2、间接考虑,当直接考虑情况较多时,可以用此法.15、①②【解题分析】
取的中点,连接、,证明四边形为平行四边形,得出,可判断出命题①的正误;由为的中点,可知三棱锥的体积为三棱锥的一半,并由平面平面,得出三棱锥体积的最大值,可判断出命题②的正误;取的中点,连接,由,结合得出平面,推出得出矛盾,可判断出命题③的正误.【题目详解】如下图所示:对于命题①,取的中点,连接、,则,,,由勾股定理得,易知,且,、分别为、的中点,所以,,四边形为平行四边形,,,平面,平面,平面,命题①正确;对于命题②,由为的中点,可知三棱锥的体积为三棱锥的一半,当平面平面时,三棱锥体积取最大值,取的中点,则,且,平面平面,平面平面,,平面,平面,的面积为,所以,三棱锥的体积的最大值为,则三棱锥的体积的最大值为,命题②正确;对于命题③,,为的中点,所以,,若,且,平面,由于平面,,事实上,易得,,,由勾股定理可得,这与矛盾,命题③错误.故答案为①②.【题目点拨】本题考查直线与平面平行、锥体体积的计算以及异面直线垂直的判定,判断这些命题时根据相关的判定定理以及性质定理,在计算三棱锥体积时,需要找到合适的底面与高来计算,考查空间想象能力,考查逻辑推理能力,属于难题.16、-1【解题分析】
计算的值,找出周期,根据余数得到答案.【题目详解】依次计算得:….周期为32019除以3余数为0,故答案为-1【题目点拨】本题考查了程序框图的相关知识,计算数据找到周期规律是解题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)分布列见解析.【解题分析】
⑴运用古典概率方法,从有奖的4张奖券中抽到了1张或2张算出答案依题意可知,的所有可能取值为,用古典概型分别求出概率,列出分布列【题目详解】(1)该顾客中奖,说明是从有奖的4张奖券中抽到了1张或2张,由于是等可能地抽取,所以该顾客中奖的概率P=.(或用间接法,P=1-).(2)依题意可知,X的所有可能取值为0,10,20,50,60(元),且P(X=0)=,P(X=10)=,P(X=20)=,P(X=50)=,P(X=60)=.所以X的分布列为:X010205060P【题目点拨】本题主要考查的是等可能事件的概率及离散型随机变量及其分布列,本题的解题关键是看出要求概率的事件包含的结果数比较多,注意做到不重不漏18、(1)见解析;(2)见解析【解题分析】试题分析:(1)根据题设中的数据,即可填写的列联表;(2)利用独立性检验的公式,计算的值,即可作出预测.试题解析:(1)2X2列联表:(2)根据列联表计算K2=≈11.11>10.828对照观测值得:能在犯错误的概率不超过0.001的前提下认为“关注”与“不关注”与年龄段有关.19、(1)答案见解析;上是增函数;(2).【解题分析】分析:(1)求导得:,分类讨论可知当时,在上是增函数,当时,在上是减函数;在上是增函数.(2)由(1)可知,时,函数有最小值,据此可得关于实数a的不等式,且满足题意,据此可知.详解:(1)求导得:,当时,恒成立,所以在上是增函数,当时,令,则.①当时,,所以在上是减函数;②时,,所以在上是增函数.(2)由(1)可知,时,,,,解得,又由于,综上所述:.点睛:(1)利用导数研究函数的单调性的关键在于准确判定导数的符号.关键是分离参数k,把所求问题转化为求函数的最值问题.(2)若可导函数f(x)在指定的区间D上单调递增(减),求参数范围问题,可转化为f′(x)≥0(或f′(x)≤0)恒成立问题,从而构建不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 船舶泵机租赁合同
- 医疗创新项目管理流程
- 智能机场智能化施工合同
- 住院期间患者离院管理
- 建筑绿化安全合同协议书
- 医保业务数据
- 植物园水电设施施工协议
- 电力工程皮卡租赁协议
- 医疗器械招标评分索引表模板
- 神经外科护理观察典型案例
- 12J609防火门窗图集
- 《新媒体编创-图文短视频直播(微课版)》教案
- 2024年中国邮政集团限公司云南省分公司社会招聘(高频重点提升专题训练)共500题附带答案详解
- 酱香型白酒核心产区(仁怀) 高温大曲生产技术规范编制说明
- 2024年国家教育部留学服务中心非编招聘5人历年(高频重点提升专题训练)共500题附带答案详解
- 企业篮球培训合同范本
- 高新技术企业自查表
- 【小升初】江苏省徐州市2023-2024学年六年级下学期英语期末检测试卷(含解析)
- 工厂自检自查报告
- 2024年高中英语衡水体书法练字字帖
- 工程款支付保函协议书
评论
0/150
提交评论