




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省东台市梁垛镇中学数学高二第二学期期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知实数,则的大小关系是()A. B. C. D.2.在正方体中,过对角线的一个平面交于,交于得四边形,则下列结论正确的是()A.四边形一定为菱形B.四边形在底面内的投影不一定是正方形C.四边形所在平面不可能垂直于平面D.四边形不可能为梯形3.若复数(其中为虚数单位,)为纯虚数,则等于()A. B. C. D.4.集合,那么()A. B. C. D.5.已知抛物线,过其焦点的直线交抛物线于两点,若,则的面积(为坐标原点)为()A. B. C. D.6.从5个中国人、4个美国人、3个日本人中各选一人的选法有()A.12种 B.24种 C.48种 D.60种7.《中国诗词大会》(第二季)亮点颇多,十场比赛每场都有一首特别设计的开场诗词在声光舞美的配合下,百人团齐声朗诵,别有韵味.若《将进酒》《山居秋暝》《望岳《送杜少府之任蜀州》和另确定的两首诗词排在后六场,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻且均不排在最后,则后六场的排法有()A.288种 B.144种 C.720种 D.360种8.x-2xn的展开式中的第7A.16 B.18 C.20 D.229.设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为A. B. C. D.10.已知满足,其中,则的最小值为()A. B. C. D.111.关于函数,下列说法正确的是()A.是周期函数,周期为 B.关于直线对称C.在上是单调递减的 D.在上最大值为12.若、、,且,则下列不等式中一定成立的是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设,则等于_________.14.已知,则=________15.已知函数,若对任意,存在,,则实数的取值范围为_____.16.复数(为虚数单位)的共轭复数为,则_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线过点M(﹣3,3),圆.(Ⅰ)求圆C的圆心坐标及直线截圆C弦长最长时直线的方程;(Ⅱ)若过点M直线与圆C恒有公共点,求实数m的取值范围.18.(12分)已知,,求;;;设,求和:.19.(12分)某市为迎接“国家义务教育均衡发展”综合评估,市教育行政部门在全市范围内随机抽取了所学校,并组织专家对两个必检指标进行考核评分.其中分别表示“学校的基础设施建设”和“学校的师资力量”两项指标,根据评分将每项指标划分为(优秀)、(良好)、(及格)三个等级,调查结果如表所示.例如:表中“学校的基础设施建设”指标为等级的共有所学校.已知两项指标均为等级的概率为0.21.(1)在该样本中,若“学校的基础设施建设”优秀率是0.4,请填写下面列联表,并根据列联表判断是否有的把握认为“学校的基础设施建设”和“学校的师资力量”有关;师资力量(优秀)师资力量(非优秀)合计基础设施建设(优秀)基础设施建设(非优秀)合计(2)在该样本的“学校的师资力量”为等级的学校中,若,记随机变量,求的分布列和数学期望.附:20.(12分)某商家对他所经销的一种商品的日销售量(单位:吨)进行统计,最近50天的统计结果如下表:日销售量11.52天数102515频率0.2ab若以上表中频率作为概率,且每天的销售量相互独立.(1)求5天中该种商品恰好有两天的销售量为1.5吨的概率;(2)已知每吨该商品的销售利润为2千元,表示该种商品某两天销售利润的和(单位:千元),求的分布列和数学期望.21.(12分)如图1,等边中,,是边上的点(不与重合),过点作交于点,沿将向上折起,使得平面平面,如图2所示.(1)若异面直线与垂直,确定图1中点的位置;(2)证明:无论点的位置如何,二面角的余弦值都为定值,并求出这个定值.22.(10分)已知函数.(1)求不等式的解集;(2)若对于一切,均有成立,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
根据,利用指数函数对数函数的单调性即可得出.【题目详解】解:∵,∴,,.∴.故选:B.【题目点拨】本题考查了指数函数对数函数的单调性,考查了推理能力与计算能力,属于基础题.2、D【解题分析】对于A,当与两条棱上的交点都是中点时,四边形为菱形,故A错误;对于B,四边形在底面内的投影一定是正方形,故B错误;对于C,当两条棱上的交点是中点时,四边形垂直于平面,故C错误;对于D,四边形一定为平行四边形,故D正确.故选:D3、D【解题分析】
先利用复数的除法将复数表示为一般形式,结合题中条件求出的值,再利用复数求模公式求出.【题目详解】,由于复数为纯虚数,所以,,得,,因此,,故选D.【题目点拨】本题考查复数的除法、复数的概念以及复数求模,解决复数问题,要通过复数的四则运算将复数表示为一般形式,结合复数相关知识求解,考查计算能力,属于基础题.4、D【解题分析】
把两个集合的解集表示在数轴上,可得集合A与B的并集.【题目详解】把集合A和集合B中的解集表示在数轴上,如图所示,则A∪B={x|-2<x<3}故选A.【题目点拨】本题考查学生理解并集的定义掌握并集的运算法则,灵活运用数形结合的数学思想解决数学问题,属基础题.5、B【解题分析】
首先过作,过作(为准线),,易得,.根据直线:与抛物线联立得到,根据焦点弦性质得到,结合已知即可得到,再计算即可.【题目详解】如图所示:过作,过作(为准线),.因为,设,则,.所以.在中,,所以.则.,直线为.,.所以,.在中,.所以.故选:B【题目点拨】本题主要考查抛物线的几何性质,同时考查焦点弦的性质,属于中档题.6、D【解题分析】
直接根据乘法原理得到答案.【题目详解】根据乘法原理,一共有种选法.故选:.【题目点拨】本题考查了乘法原理,属于简单题.7、B【解题分析】
根据题意分步进行分析:①用倍分法分析《将进酒》,《望岳》和另外两首诗词的排法数目;②用插空法分析《山居秋暝》与《送杜少府之任蜀州》的排法数目,由分步计数原理计算可得答案【题目详解】根据题意分步进行分析:①将《将进酒》,《望岳》和另外两首诗词的首诗词全排列,则有种顺序《将进酒》排在《望岳》的前面,这首诗词的排法有种②,这首诗词排好后,不含最后,有个空位,在个空位中任选个,安排《山居秋暝》与《送杜少府之任蜀州》,有种安排方法则后六场的排法有种故选【题目点拨】本题考查的是有关限制条件的排列数的问题,第一需要注意先把不相邻的元素找出来,将剩下的排好,这里需要注意定序问题除阶乘,第二需要将不相邻的两个元素进行插空,利用分步计数原理求得结果,注意特殊元素特殊对待。8、B【解题分析】
利用通项公式即可得出.【题目详解】x-2xn的展开式的第7项令n2-9=0=0,解得n=故选:B.【题目点拨】本题考查了二项式定理的应用、方程思想,考查了推理能力与计算能力,属于中档题.9、B【解题分析】
分析:作图,D为MO与球的交点,点M为三角形ABC的中心,判断出当平面时,三棱锥体积最大,然后进行计算可得.详解:如图所示,点M为三角形ABC的中心,E为AC中点,当平面时,三棱锥体积最大此时,,点M为三角形ABC的中心中,有故选B.点睛:本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当平面时,三棱锥体积最大很关键,由M为三角形ABC的重心,计算得到,再由勾股定理得到OM,进而得到结果,属于较难题型.10、C【解题分析】
令,利用导数可求得单调性,确定,进而得到结果.【题目详解】令,则.,由得:;由得:,在上单调递减,在上单调递增,,即的最小值为.故选:.【题目点拨】本题考查函数最值的求解问题,关键是能够利用导数确定函数的单调性,进而确定最值点.11、C【解题分析】分析:利用正弦函数的图象与性质,逐一判定,即可得到答案.详解:令,对于A中,因为函数不是周期函数,所以函数不是周期函数,所以是错误的;对于B中,因为,所以点与点关于直线对称,又,所以,所以的图象不关于对称,所以是错误的;对于C中,当时,,当时,函数为单调递减函数,所以是正确的;对于D中,时,,所以是错误的,综上可知,正确的为选项C,故选C.点睛:本题主要考查了正弦函数的对称性、周期性、单调性及其函数的最值问题,其中熟记正弦函数的图象与性质,合理运算是解答此类问题的关键,着重考查了综合分析与应用能力,以及推理与运算能力,试题有一定难度,属于中档试题.12、D【解题分析】
对,利用分析法证明;对,不式等两边同时乘以一个正数,不等式的方向不变,乘以0再根据不等式是否取等进行考虑;对,考虑的情况;对,利用同向不等式的可乘性.【题目详解】对,,因为大小无法确定,故不一定成立;对,当时,才能成立,故也不一定成立;对,当时不成立,故也不一定成立;对,,故一定成立.故选:D.【题目点拨】本题考查不等式性质的运用,考查不等式在特殊情况下能否成立的问题,考查思维的严谨性.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】设,则,则.应填答案。14、【解题分析】
首先根据诱导公式化简,再由即可得【题目详解】∵,则,【题目点拨】本题主要考查了诱导公式以及同角三角函数的基本关系,属于基础题.15、【解题分析】
利用导数求函数f(x)在(﹣1,1)上的最小值,把对任意x1∈(﹣1,1),存在x2∈(3,4),f(x1)≥g(x2)转化为g(x)在(3,4)上的最小值小于等于1有解.【题目详解】解:由f(x)=ex﹣x,得f′(x)=ex﹣1,当x∈(﹣1,0)时,f′(x)<0,当x∈(0,1)时,f′(x)>0,∴f(x)在(﹣1,0)上单调递减,在(0,1)上单调递增,∴f(x)min=f(0)=1.对任意x1∈(﹣1,1),存在x2∈(3,4),f(x1)≥g(x2),即g(x)在(3,4)上的最小值小于等于1,函数g(x)=x2﹣bx+4的对称轴为x=.当≤3,即b≤6时,g(x)在(3,4)上单调递增,g(x)>g(3)=13﹣3b,由13﹣3b≤1,得b≥4,∴4≤b≤6;当≥4,即b≥2时,g(x)在(3,4)上单调递减,g(x)>g(4)=20﹣4b,由20﹣4b≤1,得b≥,∴b≥2;当3<<4,即6<b<2时,g(x)在(3,4)上先减后增,,由≤1,解得或b,∴6<b<2.综上,实数b的取值范围为[4,+∞).故答案为:[4,+∞).【题目点拨】本题考查函数的导数的应用,函数的单调性以及最值的求法,考查分类讨论思想以及转化思想的应用,考查计算能力,是中档题.16、2【解题分析】
根据直接求解即可.【题目详解】本题正确结果:【题目点拨】本题考查复数模的求解,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(0,-2),;(Ⅱ).【解题分析】
(Ⅰ)利用直径为最长弦;(Ⅱ)利用点与圆的位置关系.【题目详解】(Ⅰ)圆C方程标准化为:∴圆心C的坐标为(0,﹣2)直线截圆C弦长最长,即过圆心,故此时的方程为:,整理得:;(Ⅱ)若过点M的直线与圆C恒有公共点,则点M在圆上或圆内,∴,得.【题目点拨】此题考查了直线与圆,点与圆的位置关系,属于基础题.18、(1)-2;(2);(3)【解题分析】
(1)令求得,令求得所有项的系数和,然后可得结论;(2)改变二项式的“-”号为“+”号,令可得;(3)由二项展开式通项公式求得,再得,变形,然后由组合数的性质求和.【题目详解】(1)在中,令,得,令,得,∴;(2)由题意,令,得;(3)由题意,又,∴,∴,∴.【题目点拨】本题考查二项式定理,考查赋值法求系数和问题,考查组合数的性质及二项式系数的性质.解题时难点在于组合数的变形,变形后才能求和.19、(1)见解析;(2)见解析.【解题分析】
(1)依题意求得n、a和b的值,填写列联表,计算K2,对照临界值得出结论;(2)由题意得到满足条件的(a,b),再计算ξ的分布列和数学期望值.【题目详解】(Ⅰ)依题意得,得由,得由得师资力量(优秀)师资力量(非优秀)基础设施建设(优秀)2021基础设施建设(非优秀)2039.因为,所以没有90﹪的把握认为“学校的基础设施建设”和“学校的师资力量”有关.(Ⅱ),,得到满足条件的有:,,,,故的分布列为1357故【题目点拨】本题主要考查了独立性检验和离散型随机变量的分布列与数学期望问题,属于中档题.20、(1)5.3155;(5)6.5.【解题分析】试题分析:第一问根据频率公式求得a=0.5,b=0.3,第二问在做题的过程中,利用题的条件确定销售量为1.5吨的频率为0.5,可以判断出销售量为1.5吨的天数服从于二项分布,利用公式求得结果,第二小问首先确定出两天的销售量以及与之对应的概率,再根据销售量与利润的关系,求得的分布列和,利用离散型随机变量的分布列以及期望公式求得结果.试题解析:(1)由题意知:a=5.5,b=5.3.①依题意,随机选取一天,销售量为1.5吨的概率p=5.5,设5天中该种商品有X天的销售量为1.5吨,则X~B(5,5.5),.②两天的销售量可能为5,5.5,3,3.5,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 员工劳动保护用品配备与管理规范考核试卷
- 太阳能建筑与城市景观融合设计考核试卷
- 舞台搭建施工材料检验标准考核试卷
- 劳务派遣企业劳动派遣协议审查与优化考核试卷
- 中等教育创业教育案例研究考核试卷
- 国际经济法国际仲裁案例解析考核试卷
- 居住社区文化活动参与度考核试卷
- 2024年新疆新和县卫生高级职称(卫生管理)考试题含答案
- 待岗薪酬管理办法
- 应付利息管理办法
- 《2025年CSCO肾癌诊疗指南》解读课件
- 《新能源汽车发展历程》课件
- 公益岗考试试题及答案
- 2025-2030控制台潜水电脑行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030中国精密仪器行业市场发展分析及发展趋势与投资前景研究报告
- 城市地下管网施工进度控制及保障措施
- 建筑节能专项施工方案总
- 2025年山东烟台国丰投资控股有限公司招聘笔试参考题库含答案解析
- 2025年江苏苏州昆山市事业单位招考笔试高频重点模拟试卷提升(共500题附带答案详解)
- 污水处理厂第三方安全协议书
- 劳模工作室创新工作室建设方案范例(2篇)
评论
0/150
提交评论