2024届武汉武昌区五校联考九年级数学第一学期期末综合测试模拟试题含解析_第1页
2024届武汉武昌区五校联考九年级数学第一学期期末综合测试模拟试题含解析_第2页
2024届武汉武昌区五校联考九年级数学第一学期期末综合测试模拟试题含解析_第3页
2024届武汉武昌区五校联考九年级数学第一学期期末综合测试模拟试题含解析_第4页
2024届武汉武昌区五校联考九年级数学第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届武汉武昌区五校联考九年级数学第一学期期末综合测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,四边形ABCD是矩形,BC=4,AB=2,点N在对角线BD上(不与点B,D重合),EF,GH过点N,GH∥BC交AB于点G,交DC于点H,EF∥AB交AD于点E,交BC于点F,AH交EF于点M.设BF=x,MN=y,则y关于x的函数图象是()A. B.C. D.2.下列事件中,属于必然事件的是()A.明天我市下雨B.抛一枚硬币,正面朝下C.购买一张福利彩票中奖了D.掷一枚骰子,向上一面的数字一定大于零3.如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别是AO,AD的中点,若AB=6,BC=8,则△AEF的面积是()A.3 B.4 C.5 D.64.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是()A.15π B.20π C.24π D.30π5.如图,滑雪场有一坡角α为20°的滑雪道,滑雪道AC的长为200米,则滑雪道的坡顶到坡底垂直高度AB的长为()A.200tan20°米 B.米 C.200sin20°米 D.200cos20°米6.下列方程中,满足两个实数根的和等于3的方程是()A.2x2+6x﹣5=0 B.2x2﹣3x﹣5=0 C.2x2﹣6x+5=0 D.2x2﹣6x﹣5=07.如图1,一个扇形纸片的圆心角为90°,半径为1.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A. B. C. D.8.如图,一个半径为r(r<1)的圆形纸片在边长为6的正六边形内任意运动,则在该六边形内,这个圆形纸片不能接触到的部分的面积是()A.πr2 B.C. D.9.在一个不透明的塑料袋中装有红色、白色球共40个,除颜色外其它都相同,小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能()A.4个 B.6个 C.34个 D.36个10.下列对于二次根式的计算正确的是()A. B.2=2C.2=2 D.2=二、填空题(每小题3分,共24分)11.已知=4,=9,是的比例中项,则=____.12.如图,△ABC周长为20cm,BC=6cm,圆O是△ABC的内切圆,圆O的切线MN与AB、CA相交于点M、N,则△AMN的周长为________cm.13.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式,则火箭升空的最大高度是___m14.如图,直线y=+4与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是_________.15.将半径为12,圆心角为的扇形围成一个圆锥的侧面,则此圆锥的底面圆的半径为____.16.如图,由10个完全相同的正三角形构成的网格图中,如图所示,则=______.17.某物体对地面的压强P(Pa)与物体和地面的接触面积S(m2)成反比例函数关系(如图),当该物体与地面的接触面积为0.25m2时,该物体对地面的压强是______Pa.18.如图,在矩形ABCD中,AB=6,BC=4,M是AD的中点,N是AB边上的动点,将△AMN沿MN所在直线折叠,得到△,连接,则的最小值是________三、解答题(共66分)19.(10分)如图,E是正方形ABCD的CD边上的一点,BF⊥AE于F,(1)求证:△ADE∽△BFA;(2)若正方形ABCD的边长为2,E为CD的中点,求△BFA的面积,20.(6分)为弘扬中华民族传统文化,某市举办了中小学生“国学经典大赛”,比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.(1)小华参加“单人组”,他从中随机抽取一个比赛项目,恰好抽中“论语”的概率是多少?(2)小明和小红组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次.则恰好小明抽中“唐诗”且小红抽中“宋词”的概率是多少?小明和小红都没有抽到“三字经”的概率是多少?请用画树状图或列表的方法进行说明.21.(6分)如图,在平面直角坐标系xOy中,直线y=x﹣2与双曲线y=(k≠0)相交于A,B两点,且点A的横坐标是1.(1)求k的值;(2)过点P(0,n)作直线,使直线与x轴平行,直线与直线y=x﹣2交于点M,与双曲线y=(k≠0)交于点N,若点M在N右边,求n的取值范围.22.(8分)(1)如图①,点,,在上,点在外,比较与的大小,并说明理由;(2)如图②,点,,在上,点在内,比较与的大小,并说明理由;(3)利用上述两题解答获得的经验,解决如下问题:在平面直角坐标系中,如图③,已知点,,点在轴上,试求当度数最大时点的坐标.23.(8分)已知关于的一元二次方程的一个根是1,求它的另一个根及m的值.24.(8分)如图,已知是一次函数的图象与反比例函数的图象的两个交点(1)求此反比例函数和一次函数的解析式.(2)根据图象写出使反比例函数的值大于一次函数的值的x取值范围.25.(10分)如图,⊙O是△ABC的外接圆,O点在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线,与AB的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△PBD∽△DCA.26.(10分)如图1,抛物线y=ax2+bx+c与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C.点D(2,3)在该抛物线上,直线AD与y轴相交于点E,点F是直线AD上方的抛物线上的动点.(1)求该抛物线对应的二次函数关系式;(2)当点F到直线AD距离最大时,求点F的坐标;(3)如图2,点M是抛物线的顶点,点P的坐标为(0,n),点Q是坐标平面内一点,以A,M,P,Q为顶点的四边形是AM为边的矩形.①求n的值;②若点T和点Q关于AM所在直线对称,求点T的坐标.

参考答案一、选择题(每小题3分,共30分)1、B【分析】求出,,y=EF−EM−NF=2−BFtan∠DBC−AEtan∠DAH,即可求解.【详解】解:,y=EF﹣EM﹣NF=2﹣BFtan∠DBC﹣AEtan∠DAH=2﹣x×﹣x()=x2﹣x+2,故选:B.【点睛】本题考查的是动点图象问题,涉及到二次函数,此类问题关键是确定函数的表达式,进而求解.2、D【分析】根据定义进行判断.【详解】解:必然事件就是一定发生的事件,随机事件是可能发生也可能不发生的事件,由必然事件和随机事件的定义可知,选项A,B,C为随机事件,选项D是必然事件,故选D.【点睛】本题考查必然事件和随机事件的定义.3、A【分析】因为四边形ABCD是矩形,所以AD=BC=8,∠BAD=90°,,又因为点E,F分别是AO,AD的中点,所以EF为三角形AOD的中位线,推出,,AF:AD=1:2由此即可解决问题.【详解】解:∵四边形ABCD是矩形,AB=6,BC=8

∴,∵E,F分别是AO.AD中点,

∴,,AF:AD=1:2,∴△AEF的面积为3,

故选:A.【点睛】本题考查了相似三角形的判定与性质、三角形中位线定理、矩形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于基础题,中考常考题型.4、A【解析】试题分析:∵圆锥的主视图是腰长为5,底边长为6的等腰三角形,∴这个圆锥的底面圆的半径为3,母线长为5.∴这个圆锥的侧面积=.故选A.考点:1.简单几何体的三视图;2.圆锥的计算.5、C【解析】解:∵sin∠C=,∴AB=AC•sin∠C=200sin20°.故选C.6、D【分析】利用根与系数的关系判断即可.【详解】满足两个实数根的和等于3的方程是2x2-6x-5=0,故选D.【点睛】此题考查了根与系数的关系,熟练掌握根与系数的关系是解本题的关键.7、C【解析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD,在Rt△OCD中,OC=OD=2,∴∠ODC=30°,CD=∴∠COD=60°,∴阴影部分的面积=,故选:C.【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.8、C【分析】当圆运动到正六边形的角上时,圆与两边的切点分别为E,F,连接OE,OB,OF,根据六边形的性质得出,所以,再由锐角三角函数的定义求出BF的长,最后利用可得出答案.【详解】如图,当圆运动到正六边形的角上时,圆与两边的切点分别为E,F,连接OE,OB,OF,∵多边形是正六边形,∴,,∴圆形纸片不能接触到的部分的面积是故选:C.【点睛】本题主要考查正六边形和圆,掌握正六边形的性质和特殊角的三角函数值是解题的关键.9、B【解析】试题解析:∵摸到红色球的频率稳定在15%左右,∴口袋中红色球的频率为15%,故红球的个数为40×15%=6个.故选B.点睛:由频数=数据总数×频率计算即可.10、C【解析】根据二次根式的加减法对A、B进行判断;根据二次根式的除法法则对C进行判断;根据二次根式的乘法法则对D进行判断.【详解】A、原式=2,所以A选项错误;B、原式=,所以B选项错误;C、原式=2,所以C选项正确;D、原式=6,所以D选项错误.故选C.【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.二、填空题(每小题3分,共24分)11、±6;【解析】试题解析:是的比例中项,又解得:故答案为:12、8【分析】先作出辅助线,连接切点,利用内切圆的性质得到BE=BF,CE=CG,ME=MH,NG=NH,再利用等量代换即可解题.【详解】解:∵圆O是△ABC的内切圆,MN是圆O的切线,如下图,连接各切点,有切线长定理易得,BE=BF,CE=CG,ME=MH,NG=NH,∵△ABC周长为20cm,BC=6cm,∴BC=CE+BE=CG+BF=6cm,∴△AMN的周长=AM+AN+MN=AM+AN+FM+GN=AF+AG,又∵AF+AG=AB+AC-(BF+CG)=20-6-6=8cm故答案是8【点睛】本题考查了三角形内接圆的性质,切线长定理的应用,中等难度,熟练掌握等量代换的方法是解题关键.13、1【分析】将函数解析式配方,写成顶点式,按照二次函数的性质可得答案.【详解】解:∵==,∵,∴抛物线开口向下,当x=6时,h取得最大值,火箭能达到最大高度为1m.故答案为:1.【点睛】本题考查了二次函数的应用,熟练掌握配方法及二次函数的性质,是解题的关键.14、(1,3)【分析】首先根据直线AB求出点A和点B的坐标,结合旋转的性质可知点B′的横坐标等于OA与OB的长度之和,而纵坐标等于OA的长,进而得出B′的坐标.【详解】解:y=-x+4中,令x=0得,y=4;令y=0得,-x+4=0,解得x=3,∴A(3,0),B(0,4).

由旋转可得△AOB≌△AO′B′,∠O′AO=90°,

∴∠B′O′A=90°,OA=O′A,OB=O′B′,∴O′B′∥x轴,

∴点B′的纵坐标为OA长,即为3;横坐标为OA+O′B′=OA+OB=3+4=1.

故点B′的坐标是(1,3),

故答案为:(1,3).【点睛】本题主要考查了旋转的性质以及一次函数与坐标轴的交点问题,利用基本性质结合图形进行推理是解题的关键.15、1【分析】设圆锥的底面圆的半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式可得到关于r的方程,然后解方程即可.【详解】设圆锥的底面圆的半径为r,根据题意得解得r=1,即这个圆锥的底面圆的半径为1.故答案为:1.【点睛】本题考查了圆锥的计算,熟练掌握弧长公式,根据扇形的弧长等于圆锥底面的周长建立方程是解题的关键.16、.【解析】给图中各点标上字母,连接DE,利用等腰三角形的性质及三角形内角和定理可得出∠α=30°,同理,可得出:∠CDE=∠CED=30°=∠α,由∠AEC=60°结合∠AED=∠AEC+∠CED可得出∠AED=90°,设等边三角形的边长为a,则AE=2a,DE=a,利用勾股定理可得出AD的长,再结合余弦的定义即可求出cos(α+β)的值.【详解】给图中各点标上字母,连接DE,如图所示.在△ABC中,∠ABC=120°,BA=BC,∴∠α=30°.同理,可得出:∠CDE=∠CED=30°=∠α.又∵∠AEC=60°,∴∠AED=∠AEC+∠CED=90°.设等边三角形的边长为a,则AE=2a,DE=2×sin60°•a=a,∴,∴cos(α+β)=.故答案为:.【点睛】本题考查了解直角三角形、等边三角形的性质以及规律型:图形的变化类,构造出含一个锐角等于∠α+∠β的直角三角形是解题的关键.17、1【分析】直接利用函数图象得出函数解析式,进而求出答案.【详解】设P=,把(0.5,2000)代入得:k=1000,故P=,当S=0.25时,P==1(Pa).故答案为:1.【点睛】此题主要考查了反比例函数的应用,正确求出函数解析会死是解题关键.18、【分析】由折叠的性质可得AM=A′M=2,可得点A′在以点M为圆心,AM为半径的圆上,当点A′在线段MC上时,A′C有最小值,由勾股定理可求MC的长,即可求A′C的最小值.【详解】∵四边形ABCD是矩形,∴AB=CD=6,BC=AD=4,∵M是AD边的中点,∴AM=MD=2,∵将△AMN沿MN所在直线折叠,∴AM=A′M=2,∴点A′在以点M为圆心,AM为半径的圆上,∴如图,当点A′在线段MC上时,A′C有最小值,∵MC===2,∴A′C的最小值=MC−MA′=2−2,故答案为:2−2.【点睛】本题主要考查了翻折变换,矩形的性质、勾股定理,解题的关键是分析出A′点运动的轨迹.三、解答题(共66分)19、(1)见详解;(2)【分析】(1)根据两角相等的两个三角形相似,即可证明△ADE∽△BFA;(2)利用三角形的面积比等于相似比的平方,即可解答.【详解】(1)证明:∵BF⊥AE于点F,四边形ABCD为正方形,∴△ADE和△BFA均为直角三角形,∵DC∥AB,∴∠DEA=∠FAB,∴△ADE∽△BFA;(2)解:∵AD=2,E为CD的中点,∴DE=1,∴AE=,∴,∵△ADE∽△BFA,∴,∵S△ADE=×1×2=1,∴S△BFA=S△ADE=.【点睛】本题主要考查三角形相似的性质与判定,熟记相似三角形的判定是解决第(1)小题的关键;第(2)小题中,利用相似三角形的面积比是相似比的平方是解决此题的关键.20、(2);(2)见解析.【分析】(1)直接利用概率公式求解即可;(2)先画树状图展示所有12种等可能的结果数,再找出恰好小明抽中“唐诗”且小红抽中“宋词”的结果数及小明和小红都没有抽到“三字经”的结果数,然后根据概率公式求解.【详解】解:(1)他从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=.(2)画树状图为:共有12种等可能的结果数;所以恰好小明抽中“唐诗”且小红抽中“宋词”的概率=小明和小红都没有抽到“三字经”的概率==【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.21、(1)k=1;(2)n>1或﹣1<n<2.【分析】(1)把点A的横坐标代入一次函数解析式求出纵坐标,确定出点A的坐标,代入反比例解析式求出k的值即可;

(2)根据题意画出直线,根据图象确定出点M在N右边时n的取值范围即可.【详解】解:(1)令x=1,代入y=x﹣2,则y=1,∴A(1,1),∵点A(1,1)在双曲线y=(k≠2)上,∴k=1;(2)联立得:,解得或,即B(﹣1,﹣1),如图所示:当点M在N右边时,n的取值范围是n>1或﹣1<n<2.【点睛】此题考查了一次函数与反比例函数的交点问题,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.22、(1);理由详见解析;(2);理由详见解析;(3),【分析】(1)根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,构建圆周角,然后利用三角形外角性质比较即可;(2)根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,构建圆周角,然后利用三角形外角性质比较即可;(3)根据圆周角定理,结合(1)(2)的结论首先确定圆心的位置,然后即可得出点P的坐标.【详解】(1)交于点,连接,如图所示:中又∴(2)延长交于点,连接,如图所示:中又∴(3)由(1)(2)结论可知,当OP=2.5时,∠MPN最大,如图所示:∴OM=2.5,MH=1.5∴∴,【点睛】本题考查了圆周角定理、三角形的外角性质的综合应用,熟练掌握,即可解题.23、另一根为-3,m=1【分析】设方程的另一个根为a,由根与系数的关系得出a+1=﹣m,a×1=﹣3,解方程组即可.【详解】设方程的另一个根为a,则由根与系数的关系得:a+1=﹣m,a×1=﹣3,解得:a=﹣3,m=1,答:方程的另一根为﹣3,m=1.【点睛】本题考查了根与系数的关系和一元二次方程的解,能熟记根与系数的关系的内容是解答本题的关键.24、(1),y=-x-1;(1)x>1或-4<x<0【分析】(1)先把A(-4,1)代入求出m=-8,从而确定反比例函数的解析式为;再把B(n,-4)代入求出n=1,确定B点坐标为(1,-4),然后利用待定系数法确定一次函数的解析式;(1)观察图象得到当-4<x<0或x>1

时,一次函数的图象都在反比例函数图象的下方,即一次函数的值小于反比例函数的值.【详解】(1)把A(-4,1)代入得m=-4×1=-8,∴反比例函数的解析式为;把B(n,-4)代入得-4n=-8,解得n=1,∴B点坐标为(1,-4),把A(-4,1)、B(1,-4)分别代入y=kx+b得,解方程组得,∴一次函数的解析式为y=-x-1;(1)观察函数图象可得反比例函数的值大于一次函数的值的x取值范围是:-4<x<0或x>1.【点睛】本题考查了反比例函数与一次函数的交点问题:反比例函数图象与一次函数图象的交点坐标同时满足两个函数的解析式;求反比例函数图象与一次函数图象的交点坐标就是把两个图象的解析式组成方程组,方程组的解就是交点的坐标.也考查了待定系数法以及观察函数图象的能力.25、(1)见解析;(2)见解析【解析】(1)由直径所对的圆周角为直角得到∠BAC为直角,再由AD为角平分线,得到一对角相等,根据同弧所对的圆心角等于圆周角的2倍及等量代换确定出∠DOC为直角,与平行线中的一条垂直,与另一条也垂直得到OD与PD垂直,即可得证;

(2)由PD与BC平行,得到一对同位角相等,再由同弧所对的圆周角相等及等量代换得到∠P=∠ACD,根据同角的补角相等得到一对角相等,利用两对角相等的三角形相似即可得证;【详解】证明:(1)∵圆心O在BC上,∴BC是圆O的直径,∴∠BAC=90°,连接OD,∵AD平分∠BAC,∴∠BAC=2∠DAC,∵∠DOC=2∠DAC,∴∠DOC=∠BAC=90°,即OD⊥BC,∵PD∥BC,∴OD⊥PD,∵OD为圆O的半径,∴PD是圆O的切线;(2)∵PD∥BC,∴∠P=∠ABC,∵∠ABC=∠ADC,∴∠P=∠ADC,∵∠PBD+∠ABD=180°,∠ACD+∠ABD=180°,∴∠PBD=∠ACD,∴△PBD∽△DCA.【点睛】本题考查了相似三角形的判定与性质,切线的判定与性质,熟练掌握判定性质是解题关键26、(1)y=-x2+2x+3;(2)F(,);(3)n=,T(0,-)或n=-,T(0,).【分析】(1)用待定系数法求解即可;(2)作FH⊥AD,过点F作FM⊥x轴,交AD与M,易知当S△FAD最大时,点F到直线AD距离FH最大,求出直线AD的解析式,设F(t,-t2+2t+3),M(t,t+1),表示出△FAD的面积,然后利用二次函数的性质求解即可;(3)分AP为对角线和AM为对角线两种情况求解即可.【详解】解:(1)∵抛物线x轴相交于点A(-1,0),B(3,0),∴设该抛物线对应的二次函数关系式为y=a(x+1)(x-3),∵点D(2,3)在抛物线上,∴3=a×(2+1)×(2-3),∴3=-3a,∴a=-1,∴y=-(x+1)(x-3),即y=-x2+2x+3;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论