




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2020镇江市初中毕业升学模拟考试数学试题(含答案全解全析)一、填空题(本大题共有12小题,每小题2分,共计24分)1.|-5|=.
2.计算:-13×3=3.化简:(x+1)(x-1)+1=.
4.分式2x-1在实数范围内有意义,则x5.如图,CD是△ABC的中线,点E、F分别是AC、DC的中点,EF=1,则BD=.
6.如图,直线m∥n,Rt△ABC的顶点A在直线n上,∠C=90°.若∠1=25°,∠2=70°,则∠B=°.
7.一组数据:1,2,1,0,2,a,若它们的众数为1,则这组数据的平均数为.
8.若关于x的一元二次方程x2+x+m=0有两个相等的实数根,则m=.
9.已知圆锥的底面半径为3,母线长为8,则圆锥的侧面积等于.
10.如图,将△OAB绕着点O逆时针连续旋转两次得到△OA″B″,每次旋转的角度都是50°,若∠B″OA=120°,则∠AOB=°.
11.一辆货车从甲地匀速驶往乙地,到达乙地后用了半小时卸货,随即匀速返回,已知货车返回时的速度是它从甲地驶往乙地的速度的1.5倍,货车离甲地的距离y(千米)关于时间x(小时)的函数图象如图所示,则a=(小时).
12.读取表格中的信息,解决问题.n=1a1=2+23b1=3+2c1=1+22n=2a2=b1+2c1b2=c1+2a1c2=a1+2b1n=3a3=b2+2c2b3=c2+2a2c3=a2+2b2…………满足an+bn+cn3+2≥2二、选择题(本大题共有5小题,每小题3分,共计15分.在每小题所给出的四个选项中,恰有一项符合题目要求)13.下列运算正确的是()A.(x3)3=x9 B.(-2x)3=-6x3 C.2x2-x=x D.x6÷x3=x214.一个圆柱如图放置,则它的俯视图是()A.三角形 B.半圆 C.圆 D.矩形15.若实数x、y满足2x-1+2(y-1)2=0,则A.1 B.32 C.2 D.16.如图,△ABC内接于半径为5的☉O,圆心O到弦BC的距离等于3,则∠A的正切值等于()A.35 B.45 C.34 17.已知过点(2,-3)的直线y=ax+b(a≠0)不经过第一象限.设s=a+2b,则s的取值范围是()A.-5≤s≤-32 B.-6<s≤-C.-6≤s≤-32 D.-7<s≤-三、解答题(本大题共有11小题,共计81分.解答时应写出必要的文字说明、证明过程或演算步骤)18.(本小题满分8分)(1)计算:12-1+2cos(2)化简:x+1x19.(本小题满分10分)(1)解方程:3x-2(2)解不等式:2+2x-1320.(本小题满分6分)如图,在四边形ABCD中,AB=AD,BC=DC,AC、BD相交于点O,点E在AO上,且OE=OC.(1)求证:∠1=∠2;(2)连结BE、DE,判断四边形BCDE的形状,并说明理由.21.(本小题满分6分)为了了解“通话时长”(“通话时长”指每次通话时间)的分布情况,小强收集了他家1000个“通话时长”数据,这些数据均不超过18(单位:分钟),他从中随机抽取了若干个数据作为样本,统计结果如下表,并绘制了不完整的频数分布直方图.“通话时长”(x分钟)0<x≤33<x≤66<x≤99<x≤1212<x≤1515<x≤18次数36a812812根据图、表提供的信息,解答下面的问题:(1)a=,样本容量是,并将这个频数分布直方图补充完整;
(2)求样本中“通话时长”不超过9分钟的频率;(3)请估计小强家这1000次通话中“通话时长”超过15分钟的次数.22.(本小题满分6分)在一只不透明的布袋中装有红球、黄球各若干个····,这些球除颜色外都相同,充分摇匀(1)若布袋中有3个红球,1个黄球.从袋中一次摸出2个球,计算“摸出的球恰是一红一黄”的概率(用“画树状图”或“列表”的方法写出计算过程);(2)若布袋中有3个红球,x个黄球.请写出一个x的值,使得事件“从袋中一次摸出4个球,都是黄球”是不可能事件;
(3)若布袋中有3个红球,4个黄球.我们知道:“从袋中一次摸出4个球,至少有一个黄球”为必然事件.请你仿照这个表述,设计一个必然事件:.
23.(本小题满分6分)在平面直角坐标系xOy中,直线y=kx+4(k≠0)与y轴交于点A.(1)如图,直线y=-2x+1与直线y=kx+4(k≠0)交于点B,与y轴交于点C,点B的横坐标为-1.①求点B的坐标及k的值;②直线y=-2x+1、直线y=kx+4与y轴所围成的△ABC的面积等于;
(2)直线y=kx+4(k≠0)与x轴交于点E(x0,0),若-2<x0<-1,求k的取值范围.24.(本小题满分6分)如图,小明从点A处出发,沿着坡角为α的斜坡向上走了0.65千米到达点B,sinα=513,然后又沿着坡度为i=1∶4的斜坡向上走了1千米到达点C.问小明从A点到C点上升的高度CD是多少千米(结果保留根号25.(本小题满分6分)六·一儿童节,小文到公园游玩,看到公园的一段人行弯道MN(不计宽度),如图,它与两面互相垂直的围墙OP、OQ之间有一块空地MPOQN(MP⊥OP,NQ⊥OQ),他发现弯道MN上任一点到两边围墙的垂线段与围墙所围成的矩形的面积都相等,比如:A、B、C是弯道MN上三点,矩形ADOG、矩形BEOH、矩形CFOI的面积相等.爱好数学的他建立了平面直角坐标系(如图),图中三块阴影部分的面积分别记为S1、S2、S3,并测得S2=6(单位:平方米),OG=GH=HI.(1)求S1和S3的值;(2)设T(x,y)是弯道MN上的任一点,写出y关于x的函数关系式;(3)公园准备对区域MPOQN内部进行绿化改造,在横坐标、纵坐标都是偶数的点处种植花木(区域边界上的点除外),已知MP=2米,NQ=3米.问一共能种植多少棵花木?26.(本小题满分8分)如图,☉O的直径AC与弦BD相交于点F,点E是DB延长线上一点,∠EAB=∠ADB.(1)求证:EA是☉O的切线;(2)已知点B是EF的中点.求证:以A、B、C为顶点的三角形与△AEF相似;(3)已知AF=4,CF=2,在(2)的条件下,求AE的长.27.(本小题满分9分)如图1,在平面直角坐标系xOy中,点M为抛物线y=-x2+2nx-n2+2n的顶点,过点(0,4)作x轴的平行线,交抛物线于点P、Q(点P在点Q的左侧),PQ=4.(1)求抛物线的函数关系式,并写出点P的坐标;(2)小丽发现:将抛物线y=-x2+2nx-n2+2n绕着点P旋转180°,所得新抛物线的顶点恰为坐标原点O.你认为正确吗?请说明理由;(3)如图2,已知点A(1,0),以PA为边作矩形PABC(点P、A、B、C按顺时针的方向排列),PAAB=1①写出C点的坐标:C(,)(坐标用含有t的代数式表示);
②若点C在题(2)中旋转后的新抛物线上,求t的值.28.(本小题满分10分)我们知道平行四边形有很多性质.现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.【发现与证明】▱ABCD中,AB≠BC,将△ABC沿AC翻折至△AB'C,连结B'D.结论1:B'D∥AC;结论2:△AB'C与▱ABCD重叠部分的图形是等腰三角形.……请利用图1证明结论1或结论2(只需证明一个结论).【应用与探究】在▱ABCD中,已知∠B=30°,将△ABC沿AC翻折至△AB'C,连结B'D.(1)如图1,若AB=3,∠AB'D=75°,则∠ACB=°,BC=;
(2)如图2,AB=23,BC=1,AB'与边CD相交于点E,求△AEC的面积;(3)已知AB=23,当BC长为多少时,△AB'D是直角三角形?答案全解全析:一、填空题1.答案5解析负数的绝对值是它的相反数,所以|-5|=5.2.答案-1解析-13×3=-3.答案x2解析(x+1)(x-1)+1=x2-1+1=x2.4.答案x≠1解析要使2x-1有意义,则x-1≠0,所以5.答案2解析∵点E、F分别是AC、DC的中点,∴EF是△ACD的中位线,∴AD=2EF=2,又∵CD是△ABC的中线,∴BD=AD=2.6.答案45解析∵m∥n,∴∠2=∠BAC+∠1,∴∠BAC=∠2-∠1=45°,∴∠B=90°-∠BAC=45°.7.答案7解析一组数据1,2,1,0,2,a的众数为1,所以a=1,则这一组数据的平均数为1+2+1+0+2+16=7评析本题考查了众数和平均数的概念,属容易题.8.答案1解析因为一元二次方程有两个相等的实数根,所以Δ=12-4m=0,解得m=149.答案24π解析S侧面积=12评析圆锥侧面展开图的弧长是圆锥的底面周长,半径是圆锥的母线长,属容易题.10.答案20解析∠B″OA=2×50°+∠AOB,所以∠AOB=120°-100°=20°.11.答案5解析由题意可知,货车从甲地到乙地所用的时间为3.2-0.5=2.7小时,所以货车从乙地返回到甲地所用的时间为2.71.5=1.8小时12.答案7解析由题意可得,a2+b2+c2=3(a1+b1+c1)=32(3+2+1),同理,a3+b3+c3=3(a2+b2+c2)=32(a1+b1+c1)=33(3+2+1),…,an+bn+cn=3n(3+2+1),所以an+bn+cn3+不等式an+bn+cn3+2≥2014×(3而36<2014<37,所以n可以取得的最小正整数是7.评析本题首先要观察a1+b1+c1,a2+b2+c2,a3+b3+c3,…,an+bn+cn前后项的关系,进而得出an+bn+cn的表达式,在解不等式3n≥2014时,主要看2014和3的几次幂相接近,从而找到最小的正整数n,属难题.二、选择题13.A(x3)3=x3×3=x9,所以A正确,故选A.14.D从上往下看该圆柱得到的图形是矩形,故选D.15.B由完全平方式和二次根式的非负性可知,2x-1=0,y-1=0,所以x=12,y=1,所以x+y=32.16.D连结CO并延长交☉O于点D,则CD为☉O的直径,连结BD,作OE⊥BC交BC于点E,依题意可得BD=2OE=6,又CD=2×5=10,所以BC=CD2-BD2=8,所以tanD=又因为∠A=∠D,所以tanA=43,故选评析本题综合考查圆周角定理,垂径定理,解直角三角形等有关知识,属中等难度题.17.B∵直线y=ax+b(a≠0)不经过第一象限,∴a<0,b≤0,又∵直线过点(2,-3),∴2a+b=-3,∴b=-2a-3,∴s=a+2b=-3a-6,解不等式组a<0,-2∴-6<-3a-6≤-32,即-6<s≤-3三、解答题18.解析(1)原式=2+2×22-3(3分=0.(4分)(2)原式=x(x-2)=(x-1)2=3x-3.(4分)19.解析(1)去分母,得3x+6-2x=0,(2分)解得x=-6,(4分)经检验,x=-6是原方程的解.故原方程的解为x=-6.(5分)(2)去分母,得6+2x-1≤3x,(2分)解得x≥5.(4分)它的解集在数轴上表示如下:(5分)评析本题考查了分式方程和一元一次不等式的解法,解分式方程时一定要注意验根.在数轴上表示不等式的解集时要注意方向和实心圆与空心圆的判断,属容易题.20.解析(1)在△ABC与△ADC中,AB=AD,BC=DC,AC=AC,∴△ABC≌△ADC,(2分)∴∠1=∠2.(3分)(2)菱形.理由:∵BC=DC,∠1=∠2,∴OD=OB,OC⊥BD.(4分)∵OE=OC,∴四边形BCDE是平行四边形.(5分)∵OC⊥BD,∴▱BCDE是菱形.(6分)21.解析(1)24;100;频数分布直方图补充完整如下图.(3分)(2)36+24+8100答:“通话时长”不超过9分钟的频率为0.68.(4分)(3)1000×12100答:“通话时长”超过15分钟的次数为120.(6分)评析本题考查了数据分析的方法及用样本估计总体的思想,属容易题.22.解析(1)设三个红球分别为红1,红2,红3,列表如下:红1红2红3黄红1红2红1红3红1黄红1红2红1红2红3红2黄红2红3红1红3红2红3黄红3黄红1黄红2黄红3黄(2分)∴共有12种等可能的结果,∴P(摸出的球恰是一红一黄)=12.(4分(2)1.(答案不唯一,x可取1≤x≤3之间的整数)(5分)(3)答案不唯一.(6分)23.解析(1)①当x=-1时,y=-2×(-1)+1=3,∴B(-1,3).(1分)将B(-1,3)代入y=kx+4,得k=1.(2分)②32.(4分(2)2<k<4.(6分)评析本题考查两直线的交点,直角坐标系中三角形面积的计算等,属容易题.24.解析作BE⊥AD于E,BF⊥CD于F,则sinα=BEAB=5∴BE=AB×513=0.65×513=14∵i=CFBF=14,(3设CF=x,则BF=4x,∴BC=17x=1,∴CF=x=1717.(5分∵BE⊥AD,BF⊥CD,CD⊥AD,∴四边形BEDF是矩形,∴BE=DF,∴CD=CF+DF=CF+BE=14+答:小明从A点到C点上升的高度CD是14+171725.解析(1)根据题意:S1+S2+S3=2S2+2S3=3S3,(1分)又∵S2=6,∴S1=18,S3=12.(3分)(设面积为k,表示出各点坐标的解题方法相应给分)(2)点T(x,y)是弯道MN上任一点,根据弯道MN上任一点到围墙两边的垂线段与围墙所围成的矩形的面积都相等,得xy=3S3=36,∴y=36x.(4分(3)一共能种植17棵花木.(6分)26.解析(1)连结BC,∵AC是☉O的直径,∴∠ABC=90°,(1分)∴∠BAC+∠ACB=90°,∵∠ADB=∠ACB,又∵∠EAB=∠ADB,∴∠EAB=∠ACB,∴∠BAC+∠EAB=90°,即∠EAC=90°,(2分)又∵点A在☉O上,∴EA是☉O的切线.(3分)(2)∵点B是EF的中点,∠EAC=90°,∴AB=BE=BF=12∴∠EAB=∠AEB,(4分)又∵∠EAB=∠ACB,∴∠AEB=∠ACB.∵∠EAC=∠ABC=90°,∴△AEF∽△BCA.(5分)(3)∵△AEF∽△BCA,∴AFEF=AB∴42AB=∴AB=23.(7分)∴EF=43.∴AE=EF2-AF2=评析本题考查圆的切线的判定方法,相似三角形的判定及性质,属中等难度题.27.解析(1)解法一:在y=-x2+2nx-n2+2n中,令y=4,得-x2+2nx-n2+2n=4,∴x1=n+2n-4,x2=n-2∴PQ=22n∴n=4,∴抛物线的函数关系式为y=-x2+8x-8,(3分)∴点P(2,4).(4分)解法二:∵y=-x2+2nx-n2+2n=-(x-n)2+2n,∴M(n,2n).根据抛物线的对称性可设P(n-2,4),Q(n+2,4),(1分)把点P(n-2,4)代入抛物线y=-(x-n)2+2n,得-(n-2-n)2+2n=4,解得n=4,∴抛物线的函数关系式为y=-x2+8x-8,(3分)点P(2,4).(4分)(2)解法一:由(1)可得M(4,8),∴直线OM的函数关系式为y=2x.∵点P(2,4)满足直线OM的函数关系式,∴点P在直线OM上.(5分)易知OP=25,OM=45,∴点P是线段OM的中点,∴将抛物线y=-x2+8x-8绕着点P旋转180°,所得新抛物线的顶点恰为坐标原点O.(6分)解法二:由(1)可得M(4,8).设P'是线段OM的中点,过点P'、M分别作P'D⊥x轴,ME⊥x轴,垂足分别为D、E,∴P'D∥ME,∴△OP'D∽△OME.∵P'为线段OM的中点,∴P'DME=ODOE=∴P'D=12ME=4,OD=1∴点P'的坐标为(2,4),(5分)∴点P与点P'重合,∴点P是线段OM的中点,∴将抛物线y=-x2+8x-8绕着点P旋转180°,所得新抛物线的顶点恰为坐标原点O.(6分)(3)C(2-4t,4+t).(8分,横纵坐标答对各给1分)在(2)中旋转后的新抛物线的解析式为y=x2,把C(2-4t,4+t)代入y=x2,得t=0(舍去)或t=1716.(9分28.解析【发现与证明】证明:如图1,设AD与B'C相交于点F,∵△ABC沿直线AC翻折至△AB'C,∴△ABC≌△AB'C,∴∠ACB=∠ACB',BC=B'C,∵四边形ABCD为平行四边形,∴AD=BC,AD∥BC,图1∴B'C=AD,∠ACB=∠CAD,∴∠ACB'=∠CAD=180°-∴AF=CF,(1分)∴B'F=DF,∴∠CB'D=∠B'DA=180°-∵∠AFC=∠B'FD,∴∠ACB'=∠CB'D,∴B'D∥AC.(2分)【应用与探究】(1)45;(3分)32+32.(4(2)解法一:过点C分别作CG⊥AB,CH⊥AB',垂足分别为G、H,∴CG=CH.在Rt△BCG中,∠BGC=90°,BC=1,∠B=30°,∴CG=12,BG=3∵AB=23,∴AG=32∴CH=CG=12由△AGC≌△AHC,得AH=AG=32设AE=x,则CE=x,由CE2=CH2+HE2,得x2=122+332-x2∴△ACE的面积=12AE·CH=7336解法二:分别过点C、A作CG⊥AB,AI⊥CD,垂足分别为G、I,∵AB∥CD,∴四边形AG
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 河北政法职业学院《数字营销传播》2023-2024学年第二学期期末试卷
- 2025专业合同律师劳动合同
- 2025年大型基础设施建设中的合同谈判与合同管理策略研究
- 北京市月坛中学2025届高三毕业班第一次调研测试生物试题含解析
- 湖南科技大学《歌曲写作与改编》2023-2024学年第一学期期末试卷
- 2025生物技术公司代理合同书合同书格式范文
- 房间台阶施工方案
- 2025【股票交易委托合同(授权书及代办协议)】委托合同样本
- 解除聘用合同协议书(2025年版)
- 电磁波笔试题目及答案
- 广告投放预算分配情况统计表(按预算项目)
- 2025年高考预测猜题 化学 信息必刷卷01(新高考 通 用)(解析版)
- 压疮的六个分期及护理措施
- 沪教版(五四学制)(2024)六年级数学下册 第六章 圆和扇形 单元测试题(含解析)
- 2025年开封大学单招职业技能测试题库完整
- 30-提前介入在建高铁的实践与思考5则范文
- 职业教育培训需求分析课件
- 2025版矿山安全生产责任承包协议范本3篇
- 并购重组税务处理-企业管理
- 四川凉山州人民政府办公室考调所属事业单位工作人员2人易考易错模拟试题(共500题)试卷后附参考答案
- 2025年中国艾草行业市场现状、发展概况、未来前景分析报告
评论
0/150
提交评论