版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省盐城市明达中学数学九年级第一学期期末质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,四边形ABCD和四边形A'B'C'D'是以点O为位似中心的位似图形,若OA:OA'=3:5,则四边形ABCD和四边形A'B'C'D'的面积比为()A.3:5 B.3:8 C.9:25 D.:2.P(3,-2)关于原点对称的点的坐标是()A.(3,2) B.(-3,2) C.(-3,-2) D.(3,-2)3.二次函数(,,为常数,且)中的与的部分对应值如下表:以下结论:①二次函数有最小值为;②当时,随的增大而增大;③二次函数的图象与轴只有一个交点;④当时,.其中正确的结论有()个A. B. C. D.4.如图,A、B、C是⊙O上互不重合的三点,若∠CAO=∠CBO=20°,则∠AOB的度数为()A.50° B.60° C.70° D.80°5.如图,已知一次函数y=ax+b与反比例函数y=图象交于M、N两点,则不等式ax+b>解集为()A.x>2或﹣1<x<0 B.﹣1<x<0C.﹣1<x<0或0<x<2 D.x>26.将一副学生常用的三角板如下图摆放在一起,组成一个四边形,连接,则的值为()A. B. C. D.7.下列事件中,是必然事件的是()A.随意翻倒一本书的某页,这页的页码是奇数. B.通常温度降到以下,纯净的水结冰.C.从地面发射一枚导弹,未击中空中目标. D.购买1张彩票,中奖.8.已知四边形ABCD的两条对角线AC与BD互相垂直,则下列结论正确的是A.当AC=BD时,四边形ABCD是矩形B.当AB=AD,CB=CD时,四边形ABCD是菱形C.当AB=AD=BC时,四边形ABCD是菱形D.当AC=BD,AD=AB时,四边形ABCD是正方形9.如图,已知在平面直角坐标系xOy中,O为坐标原点,抛物线y=﹣x2+bx+c经过原点,与x轴的另一个交点为A(﹣6,0),点C是抛物线的顶点,且⊙C与y轴相切,点P为⊙C上一动点.若点D为PA的中点,连结OD,则OD的最大值是()A. B. C.2 D.10.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是()A.左、右两个几何体的主视图相同B.左、右两个几何体的左视图相同C.左、右两个几何体的俯视图不相同D.左、右两个几何体的三视图不相同11.若点,在抛物线上,则下列结论正确的是()A. B. C. D.12.的值为()A.2 B. C. D.二、填空题(每题4分,共24分)13.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点E是AB边上一动点,过点E作DE⊥AB交AC边于点D,将∠A沿直线DE翻折,点A落在线段AB上的F处,连接FC,当△BCF为等腰三角形时,AE的长为_____.14.已知3a=4b≠0,那么=_____.15.如图,平行四边形ABCD的一边AB在x轴上,长为5,且∠DAB=60°,反比例函数y=和y=分别经过点C,D,则AD=_____.16.已知,则的值为______.17.菱形的两条对角线长分别是6和8,则菱形的边长为_____.18.若,分别是一元二次方程的两个实数根,则__________.三、解答题(共78分)19.(8分)已知关于x的一元二次方程(a﹣1)x2﹣2x+1=0有两个不相等的实数根,求a的取值范围.20.(8分)如图1,△ABC中,AB=AC=4,∠BAC=,D是BC的中点.小明对图1进行了如下探究:在线段AD上任取一点E,连接EB.将线段EB绕点E逆时针旋转80°,点B的对应点是点F,连接BF,小明发现:随着点E在线段AD上位置的变化,点F的位置也在变化,点F可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:(1)如图2,当点F在直线AD上时,连接CF,猜想直线CF与直线AB的位置关系,并说明理由.(2)若点F落在直线AD的右侧,请在备用图中画出相应的图形,此时(1)中的结论是否仍然成立,为什么?(3)当点E在线段AD上运动时,直接写出AF的最小值.21.(8分)“五一”小长假期间,小李一家想到以下四个5A级风景区旅游:A.石林风景区;B.香格里拉普达措国家公园;C.腾冲火山地质公园;D.玉龙雪山景区.但因为时间短,小李一家只能选择其中两个景区游玩(1)若小李从四个景区中随机抽出两个景区,请用树状图或列表法求出所有可能的结果;(2)在随机抽出的两个景区中,求抽到玉龙雪山风景区的概率.22.(10分)如图,在10×10正方形网格中,每个小正方形边长均为1个单位.建立坐标系后,△ABC中点C坐标为(0,1).(1)把△ABC绕点C顺时针旋转90°后得到△A1B1C1,画出△A1B1C1,并写出A1坐标.(2)把△ABC以O为位似中心放大,使放大前后对应边长为1:2,画出放大后的△A2B2C2,并写出A2坐标.23.(10分)解方程:(1)x2﹣1x+5=0(配方法)(2)(x+1)2=1x+1.24.(10分)解下列方程(1)2x(x﹣2)=1(2)2(x+3)2=x2﹣925.(12分)某商店经营一种小商品,进价为2.5元,据市场调查,销售单价是13.5元时平均每天销售量是500件,而销售单价每降低1元,平均每天就可以多售出100件.(1)假设每件商品降低x元,商店每天销售这种小商品的利润是y元,请你写出y与x的之间的函数关系式,并注明x的取值范围;(2)每件小商品销售价是多少元时,商店每天销售这种小商品的利润最大;最大利润是多少.(注:销售利润=销售收入-购进成本)26.如图,已知AD∥BE∥CF,直线l1、l2与这三条平行线分别交于点A、B、C和点D、E、F.若,DE=6,求EF的长.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据题意求出两个相似多边形的相似比,根据相似多边形的性质解答.【详解】∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA:OA′=3:5,∴DA:D′A′=OA:OA′=3:5,∴四边形ABCD与四边形A′B′C′D′的面积比为:9:1.故选:C.【点睛】本题考查位似的性质,根据位似图形的面积比等于位似比的平方可得,位似图形即特殊的相似图形,运用相似图形的性质是解题的关键.2、B【解析】根据平面坐标系中点P(x,y)关于原点对称点是(-x,-y)即可.【详解】解:关于原点对称的点的横纵坐标都互为相反数,因此P(3,-2)关于原点对称的点的坐标是(-3,2).故答案为B.【点睛】本题考查关于原点对称点的坐标的关系,解题的关键是理解并识记关于原点对称点的特点.3、B【分析】根据表中数据,可获取相关信息:抛物线的顶点坐标为(1,-4),开口向上,与x轴的两个交点坐标是(-1,0)和(3,0),据此即可得到答案.【详解】①由表格给出的数据可知(0,-3)和(2,-3)是一对对称点,所以抛物线的对称轴为=1,即顶点的横坐标为x=1,所以当x=1时,函数取得最小值-4,故此选项正确;②由表格和①可知当x<1时,函数y随x的增大而减少;故此选项错误;③由表格和①可知顶点坐标为(1,-4),开口向上,∴二次函数的图象与x轴有两个交点,一个是(-1,0),另一个是(3,0);故此选项错误;④函数图象在x轴下方y<0,由表格和③可知,二次函数的图象与x轴的两个交点坐标是(-1,0)和(3,0),∴当时,y<0;故此选项正确;综上:①④两项正确,故选:B.【点睛】本题综合性的考查了二次函数的性质,解题的关键是能根据二次函数的对称性判断:纵坐标相同两个点的是一对对称点.4、D【分析】连接CO并延长交⊙O于点D,根据等腰三角形的性质,得∠CAO=∠ACO,∠CBO=∠BCO,结合三角形外角的性质,即可求解.【详解】连接CO并延长交⊙O于点D,∵∠CAO=∠ACO,∠CBO=∠BCO,∴∠CAO=∠ACO=∠CBO=∠BCO=20°,∴∠AOD=∠CAO+∠ACO=40°,∠BOD=∠CBO+∠BCO=40°,∴∠AOB=∠AOD+∠BOD=80°.故选D.【点睛】本题主要考查圆的基本性质,三角形的外角的性质以及等腰三角形的性质,添加和数的辅助线,是解题的关键.5、A【解析】根据函数图象写出一次函数图象在反比例函数图象上方部分的x的取值范围即可.【详解】解:由图可知,x>2或﹣1<x<0时,ax+b>.故选A.【点睛】本题考查了反比例函数与一次函数的交点,利用数形结合,准确识图是解题的关键.6、B【分析】设AC、BD交于点E,过点C作CF⊥BD于点F,过点E作EG⊥CD于点G,则CF∥AB,△CDF和△DEG都是等腰直角三角形,设AB=2,则易求出CF=,由△CEF∽△AEB,可得,于是设EF=,则,然后利用等腰直角三角形的性质可依次用x的代数式表示出CF、CD、DE、DG、EG的长,进而可得CG的长,然后利用正切的定义计算即得答案.【详解】解:设AC、BD交于点E,过点C作CF⊥BD于点F,过点E作EG⊥CD于点G,则CF∥AB,△CDF和△DEG都是等腰直角三角形,∴△CEF∽△AEB,设AB=2,∵∠ADB=30°,∴BD=,∵∠BDC=∠CBD=45°,CF⊥BD,∴CF=DF=BF==,∴,设EF=,则,∴,∴,,∴,∴,∴.故选:B.【点睛】本题以学生常见的三角板为载体,考查了锐角三角函数和特殊角的三角函数值、30°角的直角三角形的性质、等腰三角形的性质等知识,构图简洁,但有相当的难度,正确添加辅助线、熟练掌握等腰直角三角形的性质和锐角三角函数的知识是解题的关键.7、B【分析】根据必然事件的定义判断即可.【详解】A、C、D为随机事件,B为必然事件.故选B.【点睛】本题考查随机事件与必然事件的判断,关键在于熟记概念.8、C【解析】试题分析:A、对角线AC与BD互相垂直,AC=BD时,无法得出四边形ABCD是矩形,故此选项错误.B、当AB=AD,CB=CD时,无法得到四边形ABCD是菱形,故此选项错误.C、当两条对角线AC与BD互相垂直,AB=AD=BC时,∴BO=DO,AO=CO,∴四边形ABCD是平行四边形.∵两条对角线AC与BD互相垂直,∴平行四边形ABCD是菱形,故此选项正确.D、当AC=BD,AD=AB时,无法得到四边形ABCD是正方形,故此选项错误.故选C.9、B【分析】取点H(6,0),连接PH,由待定系数法可求抛物线解析式,可得点C坐标,可得⊙C半径为4,由三角形中位线的定理可求OD=PH,当点C在PH上时,PH有最大值,即可求解.【详解】如图,取点H(6,0),连接PH,∵抛物线y=﹣x2+bx+c经过原点,与x轴的另一个交点为A(﹣6,0),∴,解得:,∴抛物线解析式为:y=﹣,∴顶点C(﹣3,4),∴⊙C半径为4,∵AO=OH=6,AD=BD,∴OD=PH,∴PH最大时,OD有最大值,∴当点C在PH上时,PH有最大值,∴PH最大值为=3+=3+,∴OD的最大值为:,故选B.【点睛】本题主要考查了切线的性质,二次函数的性质,三角形中位线定理等知识,解决本题的关键是要熟练掌握二次函数性质和三角形中位线的性质.10、B【分析】直接利用已知几何体分别得出三视图进而分析得出答案.【详解】A、左、右两个几何体的主视图为:,故此选项错误;B、左、右两个几何体的左视图为:,故此选项正确;C、左、右两个几何体的俯视图为:,故此选项错误;D、由以上可得,此选项错误;故选B.【点睛】此题主要考查了简单几何体的三视图,正确把握观察的角度是解题关键.11、A【分析】将x=0和x=1代入表达式分别求y1,y2,根据计算结果作比较.【详解】当x=0时,y1=-1+3=2,当x=1时,y2=-4+3=-1,∴.故选:A.【点睛】本题考查二次函数图象性质,对图象的理解是解答此题的关键.12、D【解析】根据特殊角的三角函数值及负指数幂的定义求解即可.【详解】故选:D【点睛】本题考查了特殊角的三角函数值及负指数幂的定义,比较简单,掌握定义仔细计算即可.二、填空题(每题4分,共24分)13、2或或.【分析】由勾股定理求出AB,设AE=x,则EF=x,BF=1﹣2x;分三种情况讨论:①当BF=BC时,列出方程,解方程即可;②当BF=CF时,F在BC的垂直平分线上,得出AF=BF,列出方程,解方程即可;③当CF=BC时,作CG⊥AB于G,则BG=FGBF,由射影定理求出BG,再解方程即可.【详解】由翻折变换的性质得:AE=EF.∵∠ACB=90°,AC=8,BC=6,∴AB1.设AE=x,则EF=x,BF=1﹣2x.分三种情况讨论:①当BF=BC时,1﹣2x=6,解得:x=2,∴AE=2;②当BF=CF时.∵BF=CF,∴∠B=∠FCB.∵∠A+∠B=90°,∠FCA+∠FCB=90°,∴∠A=∠FCA,∴AF=FC.∵BF=FC,∴AF=BF,∴x+x=1﹣2x,解得:x,∴AE;③当CF=BC时,作CG⊥AB于G,如图所示:则BG=FGBF.根据射影定理得:BC2=BG•AB,∴BG,即(1﹣2x),解得:x,∴AE;综上所述:当△BCF为等腰三角形时,AE的长为:2或或.故答案为:2或或.【点睛】本题考查了翻折变换的性质、勾股定理、射影定理、等腰三角形的性质;本题有一定难度,需要进行分类讨论.14、.【分析】根据等式的基本性质将等式两边都除以3b,即可求出结论.【详解】解:两边都除以3b,得=,故答案为:.【点睛】此题考查的是等式的基本性质,掌握等式的基本性质是解决此题的关键.15、1【分析】设点C(),则点D(),然后根据CD的长列出方程,求得x的值,得到D的坐标,解直角三角形求得AD.【详解】解:设点C(),则点D(),∴CD=x﹣()=∵四边形ABCD是平行四边形,∴CD=AB=5,∴=5,解得x=1,∴D(﹣3,),作DE⊥AB于E,则DE=,∵∠DAB=60°,故答案为:1.【点睛】本题考查的是平行四边形的性质、反比例性质、特殊角的三角函数值,利用平行四边形性质和反比例函数的性质列出等式是解题的关键.16、【分析】设=k,用k表示出a、b、c,代入求值即可.【详解】解:设=k,∴a=2k,b=3k,c=4k,∴==.故答案是:.【点睛】本题考查了比例的性质,涉及到连比时一般假设比值为k,这是常用的方法.17、1【分析】根据菱形对角线垂直平分,再利用勾股定理即可求解.【详解】解:因为菱形的对角线互相垂直平分,根据勾股定理可得菱形的边长为=1.故答案为1.【点睛】此题主要考查菱形的边长求解,解题的关键是熟知菱形的性质及勾股定理的运用.18、-3【分析】根据一元二次方程根与系数的关系的公式,代入所求式即可得解.【详解】由题意,得,∴故答案为:-3.【点睛】此题主要考查一元二次方程根与系数的关系,熟练掌握,即可解题三、解答题(共78分)19、a<2且a≠1【分析】根据一元二次方程的定义和判别式的意义得到a﹣1≠0且△=(﹣2)2﹣4(a﹣1)>0,然后解两个不等式得到它们的公共部分即可.【详解】∵关于x的一元二次方程(a﹣1)x2﹣2x+1=0有两个不相等的实数根,∴a﹣1≠0且△=(﹣2)2﹣4(a﹣1)>0,解得:a<2且a≠1.【点睛】本题考查了一元二次方程根的情况与判别式的关系,对于一元二次方程ax2+bx+c=0(a≠0),判别式△=b2-4ac,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根;注意a≠0这一隐含条件,避免漏解.20、(1),证明见解析;(2)成立,证明见解析;(3)AF的最小值为1【分析】(1)结合题意,根据旋转的知识,得,,再根据三角形内角和性质,得;结合AB=AC=1,D是BC的中点,推导得,即可完成解题;(2)由(1)可知:EB=EF=EC,得到B,F,C三点共圆,点E为圆心,得∠BCF=∠BEF=10°,从而计算得,完成求解;(3)由(1)和(2)知,CF∥AB,因此得点F的运动路径在CF上;故当点E与点A重合时,AF最小,从而完成求解.【详解】(1)∵将线段EB绕点E逆时针旋转80°,点B的对应点是点F∴,∴,即∵AB=AC=1,D是BC的中点∴,∴,∴,∴∴∴(2)如图,连接BE、EC、BF、EF由(1)可知:EB=EF=EC∴B,F,C三点共圆,点E为圆心∴∠BCF=∠BEF=10°∵,∴∴∴,(1)中的结论仍然成立(3)由(1)和(2)知,∴点F的运动路径在CF上如图,作AM⊥CF于点M∵∴点E在线段AD上运动时,点B旋转不到点M的位置∴故当点E与点A重合时,AF最小此时AF1=AB=AC=1,即AF的最小值为1.【点睛】本题考查了旋转、等腰三角形及底边中线、垂直平分线、全等三角形、三角形内角和、平行线、圆心角、圆周角的知识;解题的关键是熟练掌握等腰三角形、旋转、垂直平分线、平行线、圆心角和圆周角的知识,从而完成求解.21、(1)共有12种等可能结果;(2)【解析】(1)用A、B、C、D分别表示石林风景区;香格里拉普达措国家公园;腾冲火山地质公园;玉龙雪山景区四个景区,然后画树状图展示所有12种等可能的结果数;(2)在12种等可能的结果中找出玉龙风景区被选中的结果数,然后根据概率公式求解.【详解】解:(1)画树状图如下:由树状图知,共有12种等可能结果;(2)∵抽到玉龙雪山风景区的结果数为6,∴抽到玉龙雪山风景区的概率为.【点睛】本题考查利用列举法求概率,学生们要熟练掌握画树状图法和列表法,是解本题的关键.22、(1)见解析,A1(2,3);(2)见解析,A2(4,-6).【分析】(1)根据旋转变换的定义,将三角形的三个顶点分别顺时针旋转90°后得到对应点,顺次连接即可得;(2)根据位似变换的定义得出点的对应点,顺次连接即可得.【详解】解:(1)如下图所示:即为所求,A1坐标为(2,3);(2)如下图所示:即为所求,A2坐标为(4,−6).【点睛】本题考查了旋转作图及图形位似的知识,解答此类题目的关键是就是寻找对应点,要求掌握旋转三要素、位似的特点.23、(2)x2=3,x2=2;(2)x2=﹣2,x2=3【分析】(2)先变形为x2-2x=-3,再把方程两边都加上9得
x2-2x+9=-3+9,则
(x-3)2=4,然后用直接开平方法解方程即可.
(2)先移项,然后提取公因式(x+2)进行因式分解;【详解】解:(2)x2﹣2x=﹣3,x2﹣2x+32=﹣3+32,(x﹣3)2=4,x=3±2,所以x2=3,x2=2.(2)(x+2)2﹣2(x+2)=0,(x+2)(x+2﹣2)=0,x+2=0或x+2﹣2=0,所以x2=﹣2,x2=3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《基于LIMS系统在化工实验室的开发与应用》
- 2024年度商业联盟合作协议
- 2024至2030年中国纸碗机行业投资前景及策略咨询研究报告
- 《融合遗传算法与聚类集成方法的齿轮故障检测研究》
- 城市绿化与园林管理考核试卷
- 低温仓储的设备自动化与智能化考核试卷
- 2024至2030年中国油泵电缆行业投资前景及策略咨询研究报告
- 2024-2030年中国柴油船项目可行性研究报告
- libevent事件驱动架构源码解析
- 2024-2030年中国暖手宝行业市场营销模式及发展竞争力研究报告
- 第五章-语义和语用课件
- 胰岛素泵的规范使用
- 妇幼保健院产房运用PDCA循环降低经产妇阴道分娩会阴裂伤率品管圈成果汇报
- 8.12天津滨海新区爆炸事故带来的工程伦理思考
- 德育高级教师职称评审答辩教育理论题目与答案
- 语文二年级下册教学资料汇编:整本书:《小猪变形记》整本书指导
- 三通一平施工组织设计
- 110KV送出线路工程施工方案方案
- (市政)施工质量保证措施(管线、排水、道路等)方案
- 四年级数学老师家长会
- 2023-2024年卫生资格(中初级)-执业护士护士执业资格考试考试题库(含答案)
评论
0/150
提交评论