




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省苏州市昆山市、太仓市九年级数学第一学期期末质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.已知二次函数y=-x2+2mx+2,当x<-2时,y的值随x的增大而增大,则实数m()A.m=-2 B.m>-2 C.m≥-2 D.m≤-22.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为(
)A.9人 B.10人 C.11人 D.12人3.如图,为⊙O的直径,弦于,则下面结论中不一定成立的是()A. B.C. D.4.如图,已知,且,则()A. B. C. D.5.如图,在Rt△ABO中,∠AOB=90°,AO=BO=2,以O为圆心,AO为半径作半圆,以A为圆心,AB为半径作弧BD,则图中阴影部分的面积为()A.3π B.π+1 C.π D.26.下列图形中,中心对称图形有()A.4个 B.3个 C.2个 D.1个7.如图所示的几何体的左视图是()A. B. C. D.8.下列函数属于二次函数的是()A.y=x﹣ B.y=(x﹣3)2﹣x2C.y=﹣x D.y=2(x+1)2﹣19.如图,在平面直角坐标系中,⊙P的圆心坐标是(-3,a)(a>3),半径为3,函数y=-x的图像被⊙P截得的弦AB的长为,则a的值是()A.4 B. C. D.10.如图,二次函数()图象的顶点为,其图象与轴的交点,的横坐标分别为和1.下列结论:①;②;③;④当时,是等腰直角三角形.其中结论正确的个数是()A.4个 B.1个 C.2个 D.1个11.解方程,选择最适当的方法是()A.直接开平方法 B.配方法 C.公式法 D.因式分解法12.如图,AB为⊙O的弦,AB=8,OC⊥AB于点D,交⊙O于点C,且CD=1,则⊙O的半径为()A.8.5 B.7.5 C.9.5 D.8二、填空题(每题4分,共24分)13.如图,直线AB与⊙O相切于点C,点D是⊙O上的一点,且∠EDC=30°,则∠ECA的度数为_________.14.一运动员推铅球,铅球经过的路线为如图所示的抛物线,点(4,3)为该抛物线的顶点,则该抛物线所对应的函数式为_____.15.若、是方程的两个实数根,代数式的值是______.16.小明练习射击,共射击次,其中有次击中靶子,由此可估计,小明射击一次击中靶子的概率约为__________.17.计算:sin30°+tan45°=_____.18.分解因式:x3-4x三、解答题(共78分)19.(8分)如图,▱ABCD中,点E,F分别是BC和AD边上的点,AE垂直平分BF,交BF于点P,连接EF,PD.(1)求证:平行四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.20.(8分)某商场将进货单价为30元的商品以每个40元的价格售出时,平均每月能售出600个,调查表明:这种商品的售价每上涨1元,其销售量就减少10个.(1)为了使平均每月有10000元的销售利润且尽快售出,这种商品的售价应定为每个多少元?(2)当该商品的售价为每个多少元时,商场销售该商品的平均月利润最大?最大利润是多少?21.(8分)解方程:;22.(10分)如图,反比例函数y=(x>0)与直线AB:交于点C,点P是反比例函数图象上一点,过点P作x轴的垂线交直线AB于点Q,连接OP,OQ.(1)求反比例函数的解析式;(2)点P在反比例函数图象上运动,且点P在Q的上方,当△POQ面积最大时,求P点坐标.23.(10分)电影《我和我的祖国》在国庆档热播,预售票房成功破两亿,堪称热度最高的爱国电影,周老师打算从非常渴望观影的5名学生会干部(两男三女)中,抽取两人分别赠送一张的嘉宾观影卷,问抽到一男一女的概率是多少?(请你用树状图或者列表法分析)24.(10分)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求CD的长.25.(12分)如图示,在中,,,,求的面积.26.为了节省材料,某水产养殖户利用本库的岸堤(岸堤足够长)为一边,用总长为160m的围网在水库中围成了如图所示的①、②、③三块矩形区域网箱,而且这三块矩形区域的面积相等,设BE的长度为xm,矩形区域ABCD的面积为ym1.(1)则AE=m,BC=m;(用含字母x的代数式表示)(1)求矩形区域ABCD的面积y的最大值.
参考答案一、选择题(每题4分,共48分)1、C【解析】根据二次函数的性质,确定抛物线的对称轴及开口方向得出函数的增减性,结合题意确定m值的范围.【详解】解:抛物线的对称轴为直线∵,抛物线开口向下,∴当时,y的值随x值的增大而增大,∵当时,y的值随x值的增大而增大,∴,故选:C.【点睛】本题考查了二次函数的性质,主要利用了二次函数的增减性,由系数的符号特征得出函数性质是解答此题的关键.2、C【分析】设参加酒会的人数为x人,根据每两人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.【详解】设参加酒会的人数为x人,依题可得:
x(x-1)=55,
化简得:x2-x-110=0,
解得:x1=11,x2=-10(舍去),
故答案为C.【点睛】考查了一元二次方程的应用,解题的关键是根据题中的等量关系列出方程.3、D【分析】根据垂径定理分析即可.【详解】根据垂径定理和等弧对等弦,得A.B.
C正确,只有D错误.故选D.【点睛】本题考查了垂径定理,熟练掌握垂直于弦(非直径)的直径平分弦且平分这条弦所对的两条弧是解题的关键.4、D【分析】根据相似三角形的面积比等于相似比的平方即可解决问题.【详解】解:∵,∴,∵,∴,故选:D.【点睛】此题考查相似三角形的性质,解题的关键是熟练掌握相似三角形的性质解决问题,记住相似三角形的面积比等于相似比的平方.5、C【分析】根据题意和图形可以求得的长,然后根据图形,可知阴影部分的面积是半圆的面积减去扇形的面积,从而可以解答本题.【详解】解:在中,,,,图中阴影部分的面积为:,故选:C.【点睛】本题考查扇形面积的计算,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.6、B【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形进行解答.【详解】第一、二、三个图形是中心对称图形,第四个图形是轴对称图形,不是中心对称图形.综上所述,是中心对称图形的有3个.故答案选B.【点睛】本题考查了中心对称图形,解题的关键是熟练的掌握中心对称图形的定义.7、D【分析】根据左视图是从左边看得到的图形,可得答案.【详解】从左边看一个正方形被分成两部分,正方形中间有一条横向的虚线,如图:故选:D.【点睛】本题考查了几何体的三视图,从左边看得到的是左视图.8、D【分析】由二次函数的定义:形如,则是的二次函数,从而可得答案.【详解】解:A.自变量x的次数不是2,故A错误;B.整理后得到,是一次函数,故B错误C.由可知,自变量x的次数不是2,故C错误;D.是二次函数的顶点式解析式,故D正确.故选:D.【点睛】本题考查的是二次函数的定义,掌握二次根式的定义是解题的关键.9、B【分析】如图所示过点P作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,可得OC=3,PC=a,把x=-3代入y=-x得y=3,可确定D点坐标,可得△OCD为等腰直角三角形,得到△PED也为等腰直角三角形,又PE⊥AB,由垂径定理可得AE=BE=AB=2,在Rt△PBE中,由勾股定理可得PE=,可得PD=PE=,最终求出a的值.【详解】作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(-3,a),∴OC=3,PC=a,把x=-3代入y=-x得y=3,∴D点坐标为(-3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故选B.【点睛】本题主要考查了垂径定理、一次函数图象上点的坐标特征以及勾股定理,熟练掌握圆中基本定理和基础图形是解题的关键.10、C【分析】①x=1=−,即b=−2a,即可求解;②当x=1时,y=a+b+c<0,即可求解;③分别判断出a,b,c的取值,即可求解;④时,函数的表达式为:y=(x+1)(x−1)=,则点A、B、D的坐标分别为:(−1,0)、(1,0)(1,−2),即可求解.【详解】其图象与x轴的交点A,B的横坐标分别为−1和1,则函数的对称轴为:x=1,①x=1=−,即b=−2a,故不符合题意;②当x=1时,y=a+b+c<0,符合题意;③由图可得开口向上,a>0,对称轴x=1,∴a,b异号,b<0,图像与y轴交于负半轴,c<0∴>0,不符合题意;④时,函数的表达式为:y=(x+1)(x−1)=,则点A、B、D的坐标分别为:(−1,0)、(1,0)(1,−2),AB2=(-1-1)2+02=16,AD2=(-1-1)2+(0-2)2=8,BD2=(1-1)2+(0-2)2=8,故△ABD是等腰直角三角形符合题意;故选:C.【点睛】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.11、D【解析】根据方程含有公因式,即可判定最适当的方法是因式分解法.【详解】由已知,得方程含有公因式,∴最适当的方法是因式分解法故选:D.【点睛】此题主要考查一元二次方程解法的选择,熟练掌握,即可解题.12、A【解析】根据垂径定理得到直角三角形,求出的长,连接,得到直角三角形,然后在直角三角形中计算出半径的长.【详解】解:如图所示:连接,则长为半径.∵于点,∴,∵在中,,∴,∴,故答案为A.【点睛】本题主要考查垂径定理和勾股定理.根据垂径定理“垂直于弦的直径平分弦,并且平分弦所对的弧”得到一直角边,利用勾股定理列出关于半径的等量关系是解题关键.二、填空题(每题4分,共24分)13、30°【分析】连接OE、OC,根据圆周角定理求出∠EOC=60°,从而证得为等边三角形,再根据切线及等边三角形的性质即可求出答案.【详解】解:如图所示,连接OE、OC,∵∠EDC=30°,∴∠EOC=2∠EDC=60°,又∵OE=OC,∴为等边三角形,∴∠ECO=60°,∵直线AB与圆O相切于点C,∴∠ACO=90°,∴∠ECA=∠ACO-∠ECO=90°-60°=30°.故答案为:30°.【点睛】本题考查了圆的基本性质、圆周角定理及切线的性质,等边三角形的判定与性质,熟练掌握各性质判定定理是解题的关键.14、y=-(x﹣4)2+1【分析】根据二次函数的顶点式即可求出抛物线的解析式.【详解】解:根据题意,得设抛物线对应的函数式为y=a(x﹣4)2+1把点(0,)代入得:16a+1=解得a=﹣,∴抛物线对应的函数式为y=﹣(x﹣4)2+1故答案为:y=﹣(x﹣4)2+1.【点睛】本题考查了用待定系数法利用顶点坐标式求函数的方法,同时还考查了方程的解法等知识,难度不大.15、1【分析】先对所求代数式进行变形为,然后将代入方程中求出的值,根据根与系数的关系求出的值,最后代入即可求解.【详解】∵是方程的根∴∴∵、是方程的两个实数根∴原式=故答案为:1.【点睛】本题主要考查一元二次方程的根,根与系数的关系,掌握根与系数的关系,能够对所求代数式进行适当变形是解题的关键.16、0.9【分析】根据频率=频数÷数据总数计算即可得答案.【详解】∵共射击300次,其中有270次击中靶子,∴射中靶子的频率为=0.9,∴小明射击一次击中靶子的概率约为0.9,故答案为:0.9【点睛】本题考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.17、【详解】解:sin30°+tan45°=【点睛】此题主要考察学生对特殊角的三角函数值的记忆30°、45°、60°角的各个三角函数值,必须正确、熟练地进行记忆.18、x(x-2y)2【分析】首先提取公因式x,然后利用完全平方公式进行分解.【详解】解:原式=x(x2-4xy+4y2)故答案为:x(x-2y)2【点睛】本题考查因式分解,掌握完全平方公式的结构是本题的解题关键.三、解答题(共78分)19、(1)详见解析;(2)tan∠ADP=35【解析】(1)根据线段垂直平分线的性质和平行四边形的性质即可得到结论;(2)作PH⊥AD于H,根据四边形ABEF是菱形,∠ABC=60°,AB=4,得到AB=AF=4,∠ABF=∠ADB=30°,AP⊥BF,从而得到PH=3,DH=5,然后利用锐角三角函数的定义求解即可.【详解】(1)证明:∵AE垂直平分BF,∴AB=AF,∴∠BAE=∠FAE,∵四边形ABCD是平行四边形,∴AD∥BC.∴∠FAE=∠AEB,∴∠AEB=∠BAE,∴AB=BE,∴AF=BE.∵AF∥BC,∴四边形ABEF是平行四边形.∵AB=BE,∴四边形ABEF是菱形;(2)解:作PH⊥AD于H,∵四边形ABEF是菱形,∠ABC=60°,AB=4,∴AB=AF=4,∠ABF=∠AFB=30°,AP⊥BF,∴AP=12AB=2∴PH=3,DH=5,∴tan∠ADP=PHDH=3【点睛】本题考查了菱形的判定及平行四边形的性质,解题的关键是牢记菱形的几个判定定理,难度不大.20、(1)50元;(2)该商品的售价为每个65元时,商场销售该商品的平均月利润最大,最大利润是12250元.【分析】(1)设该商品的售价是每个元,根据利润=每个的利润×销售量,即可列出关于x的方程,解方程即可求出结果;(2)设该商品的售价为每个元,利润为y元,根据利润=每个的利润×销售量即可得出y关于x的函数关系式,然后利用二次函数的性质解答即可.【详解】解:(1)设该商品的售价是每个元,根据题意,得:,解之得:,(不合题意,舍去).答:为了尽快售出,这种商品的售价应定为每个50元;(2)设该商品的售价为每个元,利润为y元,则,∴当时,利润最大,最大利润是12250元.答:该商品的售价为每个65元时,商场销售该商品的平均月利润最大,最大利润是12250元.【点睛】本题是一元二次方程和二次函数的应用题,属于常考题型,熟练掌握一元二次方程的解法和二次函数的性质是解题关键.21、1+、1-【详解】X=1+或者x=1-22、(1)y=;(2)P(2,2)【分析】(1)点C在一次函数上得:m=,点C在反比例函数上:,求出k即可.(2)动点P(m,),则点Q(m,﹣2),PQ=-+2,则△POQ面积=,利用-公式求即可.【详解】解:(1)将点C的坐标代入一次函数表达式得:m=,故点C,将点C的坐标代入反比例函数表达式得:,解得k=4,故反比例函数表达式为y=;(2)设点P(m,),则点Q(m,﹣2),则△POQ面积=PQ×xP=(﹣m+2)•m=﹣m2+m+2,∵﹣<0,故△POQ面积有最大值,此时m==2,故点P(2,2).【点睛】本题考查反比例函数解析式,及面积最大值问题,关键是会利用一次函数求点C坐标,利用动点P表示Q,求出面积函数,用对称轴公式即可解决问题.23、【分析】列举出所有等情况和抽到一男一女的情况数,再根据概率公式即可得出答案.【详解】设三个女生记为,,,两个男生记为,.列表如下:有且只有以上20种情形,它们发生的机会均等,抽到一男一女有12种情形,∴(一男一女)=【点睛】本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年关于电子产品销售的合同模板
- 会员制合同样本
- 众筹合作协议合同范例
- 二零二五外聘演员合同范例
- 供用热合同标准文本
- 做合同样本样本
- 顶账楼买卖合同范文
- 离职后保密协议离职保密协议书
- 泵车承包合同范例
- 聘用灶房大师傅合同书
- 当代世界经济与政治 李景治 第八版 课件 第1、2章 当代世界政治、当代世界经济
- 2023年复合型胶粘剂项目安全评价报告
- DZ∕T 0215-2020 矿产地质勘查规范 煤(正式版)
- 【初中+语文】中考语文一轮专题复习+《名著阅读+女性的力量》课件
- 2024年强基计划解读 课件-2024届高三下学期主题班会
- 城市道路桥梁工程施工质量验收规范 DG-TJ08-2152-2014
- 响应面分析软件DesignExpert使用教程
- 《新病历书写规范》课件
- 2024城镇燃气管道非开挖修复更新工程技术规范
- 肠胃消化健康的知识讲座
- 新概念英语第二册-Lesson-56-Faster-than-sound-课件
评论
0/150
提交评论