版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省如东县数学九年级第一学期期末综合测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.已知函数:(1)xy=9;(2)y=;(3)y=-;(4)y=;(5)y=,其中反比例函数的个数为(
)A.1 B.2 C.3 D.42.若函数y=的图象在其象限内y的值随x的增大而增大,则m的取值范围是()A.m>2 B.m<2 C.m>-2 D.m<-23.如图,线段AB两个端点的坐标分别为A(6,6),B(8,2).以原点O为位似中心,在第一象限内将线段AB缩小后得到线段CD,且D(4,1),则端点C的坐标为()A.(3,1) B.(4,1) C.(3,3) D.(3,4)4.若二次函数的图像与轴有两个交点,则实数的取值范围是()A. B. C. D.5.我们知道,一元二次方程可以用配方法、因式分解法或求根公式进行求解.对于一元三次方程ax3+bx2+cx+d=0(a,b,c,d为常数,且a≠0)也可以通过因式分解、换元等方法,使三次方程“降次”为二次方程或一次程,进而求解.这儿的“降次”所体现的数学思想是()A.转化思想 B.分类讨论思想C.数形结合思想 D.公理化思想6.下列数是无理数的是()A. B. C. D.7.如图,若二次函数的图象的对称轴是直线,则下列四个结论中,错误的是().A. B. C. D.8.某班学生做“用频率估计概率”的实验时,给出的某一结果出现的频率折线图,则符合这一结果的实验可能是()A.抛一枚硬币,出现正面朝上B.从标有1,2,3,4,5,6的六张卡片中任抽一张,出现偶数C.从一个装有6个红球和3个黑球的袋子中任取一球,取到的是黑球D.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃9.图中所示的几个图形是国际通用的交通标志.其中不是轴对称图形的是()A. B. C. D.10.二次函数的图象可以由二次函数的图象平移而得到,下列平移正确的是()A.先向右平移2个单位,再向上平移1个单位B.先向右平移2个单位,再向下平移1个单位C.先向左平移2个单位,再向上平移1个单位D.先向左平移2个单位,再向下平移1个单位11.下列各式属于最简二次根式的是()A. B. C. D.12.如图,点是的边上的一点,若添加一个条件,使与相似,则下列所添加的条件错误的是()A. B. C. D.二、填空题(每题4分,共24分)13.75°的圆心角所对的弧长是2.5cm,则此弧所在圆的半径是_____cm.14.关于的方程有两个不相等的实数根,那么的取值范围是__________.15.如图,以等边△ABC的一边AB为直径的半圆O交AC于点D,交BC于点E,若AB=4,则阴影部分的面积是______.16.使代数式有意义的实数x的取值范围为_____.17.如图,在与中,,要使与相似,还需添加一个条件,这个条件可以是____________(只需填一个条件)18.如图,在直角坐标系中,已知点、,对连续作旋转变换,依次得到,则的直角顶点的坐标为__________.三、解答题(共78分)19.(8分)根据2019年莆田市初中毕业升学体育考试内容要求,甲、乙、丙在某节体育课他们各自随机分别到篮球场A处进行篮球运球绕杆往返训练或到足球场B处进行足球运球绕杆训练,三名学生随机选择其中的一场地进行训练.(1)用列表法或树形图表示出的所用可能出现的结果;(2)求甲、乙、丙三名学生在同一场地进行训练的概率;(3)求甲、乙、丙三名学生中至少有两人在B处场地进行训练的概率.20.(8分)已知二次函数的图象顶点是,且经过,求这个二次函数的表达式.21.(8分)如图,AB是⊙O的直径,点C是⊙O上一点,AD⊥DC于D,且AC平分∠DAB.延长DC交AB的延长线于点P.(1)求证:PC2=PA•PB;(2)若3AC=4BC,⊙O的直径为7,求线段PC的长.22.(10分)如图,在矩形ABCD中,AB=6,BC=8,点E是BC边上的一个动点(不与点B.
C重合),连结AE,并作EF⊥AE,交CD边于点F,连结AF.设BE=x,CF=y.(1)求证:△ABE∽△ECF;(2)当x为何值时,y的值为2;23.(10分)某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个,因受库存的影响,每批次进货个数不得超过180个,商店若将准备获利2000元,定价为多少元?24.(10分)如图,在平面直角坐标系中,已知抛物线与轴交于、两点,与轴交于点,其顶点为点,点的坐标为(0,-1),该抛物线与交于另一点,连接.(1)求该抛物线的解析式,并用配方法把解析式化为的形式;(2)若点在上,连接,求的面积;(3)一动点从点出发,以每秒1个单位的速度沿平行于轴方向向上运动,连接,,设运动时间为秒(>0),在点的运动过程中,当为何值时,?25.(12分)如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EF、EO,若DE=2,∠DPA=45°.(1)求⊙O的半径;(2)求图中阴影部分的面积.26.已知二次函数(k是常数)(1)求此函数的顶点坐标.(2)当时,随的增大而减小,求的取值范围.(3)当时,该函数有最大值,求的值.
参考答案一、选择题(每题4分,共48分)1、C【分析】直接根据反比例函数的定义判定即可.【详解】解:反比例函数有:xy=9;y=;y=-.故答案为C.【点睛】本题考查了反比例函数的定义,即形如y=(k≠0)的函数关系叫反比例函数关系.2、B【分析】先根据反比例函数的性质列出关于m的不等式,求出m的取值范围即可.【详解】∵函数y=的图象在其象限内y的值随x值的增大而增大,∴m−1<0,解得m<1.
故选:B.【点睛】本题考查的是反比例函数的性质,熟知反比例函数y=(k≠0)中,当k<0时,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大是解答此题的关键.3、C【分析】利用位似图形的性质,结合两图形的位似比,即可得出C点坐标.【详解】解:∵线段AB的两个端点坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小后得到线段CD,且D(4,1),∴在第一象限内将线段AB缩小为原来的后得到线段CD,∴点C的横坐标和纵坐标都变为A点的一半,∴点C的坐标为:(3,3).故选:C.【点睛】此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键.在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.4、D【解析】由抛物线与x轴有两个交点可得出△=b2-4ac>0,进而可得出关于m的一元一次不等式,解之即可得出m的取值范围.【详解】∵抛物线y=x2-2x+m与x轴有两个交点,∴△=b2-4ac=(-2)2-4×1×m>0,即4-4m>0,解得:m<1.故选D.【点睛】本题考查了抛物线与x轴的交点,牢记“当△=b2-4ac>0时,抛物线与x轴有2个交点”是解题的关键.5、A【分析】解高次方程的一般思路是逐步降次,所体现的数学思想就是转化思想.【详解】由题意可知,解一元三次方程的过程是将三次转化为二次,二次转化为一次,从而解题,在解题技巧上是降次,在解题思想上是转化思想.故选:A.【点睛】本题考查高次方程;通过题意,能够从中提取出解高次方程的一般方法,同时结合解题过程分析出所运用的解题思想是解题的关键.6、C【分析】根据无理数的定义进行判断即可.【详解】A.,有理数;B.,有理数;C.,无理数;D.,有理数;故答案为:C.【点睛】本题考查了无理数的问题,掌握无理数的定义是解题的关键.7、C【分析】根据对称轴是直线得出,观察图象得出,,进而可判断选项A,根据时,y值的大小与可判断选项C、D,根据时,y值的大小可判断选项B.【详解】由题意知,,即,由图象可知,,,∴,∴,选项A正确;当时,,选项D正确;∵,∴,选项C错误;当时,,选项B正确;故选C.【点睛】本题考查二次函数的图象与系数a,b,c的关系,学会取特殊点的方法是解本题的关键.8、C【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的频率,约为0.33者即为正确答案.【详解】解:A、抛一枚硬币,出现正面朝上的频率是=0.5,故本选项错误;B、从标有1,2,3,4,5,6的六张卡片中任抽一张,出现偶数频率约为:==0.5,故本选项错误;C、从一个装有6个红球和3个黑球的袋子中任取一球,取到的是黑球概率是=≈0.33,故本选项正确;D、一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率是=0.25,故本选项错误;故选:C.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.9、C【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.【详解】A、B、D都是轴对称图形,而C不是轴对称图形.
故选C.【点睛】本题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10、C【解析】二次函数平移都是通过顶点式体现,将转化为顶点式,与原式对比,利用口诀左加右减,上加下减,即可得到答案【详解】解:∵,∴的图形是由的图形,向左平移2个单位,然后向上平移1个单位【点睛】本题主要考查二次函数图形的平移问题,学生熟练掌握左加右减,上加下减即可解决这类题目11、B【解析】根据最简二次根式的定义进行判断即可.【详解】解A、,不是最简二次根式;B、2不能再开方,是最简二次根式;C、,不是最简二次根式;D、=2,不是最简二次根式.故选:B.【点睛】本题考查了最简二次根式,掌握二次根式的性质及最简二次根式的定义是解答本题的关键.12、D【分析】在与中,已知有一对公共角∠B,只需再添加一组对应角相等,或夹已知等角的两组对应边成比例,即可判断正误.【详解】A.已知∠B=∠B,若,则可以证明两三角形相似,正确,不符合题意;B.已知∠B=∠B,若,则可以证明两三角形相似,正确,不符合题意;C.已知∠B=∠B,若,则可以证明两三角形相似,正确,不符合题意;D.若,但夹的角不是公共等角∠B,则不能证明两三角形相似,错误,符合题意,故选:D.【点睛】本题考查相似三角形的判定,熟练掌握相似三角形的判定条件是解答的关键.二、填空题(每题4分,共24分)13、1【分析】由弧长公式:计算.【详解】解:由题意得:圆的半径.故本题答案为:1.【点睛】本题考查了弧长公式.14、且【解析】分析:根据一元二次方程的定义以及根的判别式的意义可得△=4-12m>1且m≠1,求出m的取值范围即可.详解:∵一元二次方程mx2-2x+3=1有两个不相等的实数根,∴△>1且m≠1,∴4-12m>1且m≠1,∴m<且m≠1,故答案为:m<且m≠1.点睛:本题考查了一元二次方程ax2+bx+c=1(a≠1,a,b,c为常数)根的判别式△=b2-4ac.当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.也考查了一元二次方程的定义.15、【分析】作辅助线证明△AOD≌△DOE≌△EOB≌△CDE,且都为等边三角形,利用等边三角形面积公式S=即可解题.【详解】解:连接DE,OD,OE,在圆中,OA=OD=OE=OB,∵△ABC是等边三角形,∴∠A=60°,∴△AOD≌△DOE≌△EOB≌△CDE,且都为等边三角形,∵AB=4,即OA=OD=OE=OB=2,易证阴影部分面积=S△CDE==.【点睛】本题考查了圆的性质,等边三角形的判定和面积公式,属于简单题,作辅助线证明等边三角形是解题关键.16、【分析】根据二次根式有意义的条件得出即可求解.【详解】若代数式有意义,则,解得:,即实数x的取值范围为.故填:【点睛】本题考查二次根式有意义的条件,熟练掌握二次根式有意义即根号内的式子要大于等于零是关键.17、∠B=∠E【分析】根据两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似可得添加条件:∠B=∠E.【详解】添加条件:∠B=∠E;
∵,∠B=∠E,
∴△ABC∽△AED,
故答案为:∠B=∠E(答案不唯一).【点睛】此题考查相似三角形的判定,解题关键是掌握相似三角形的判定定理.18、【分析】根据勾股定理列式求出AB的长,再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环,然后求出一个循环组旋转前进的长度,再用2019除以3,根据商为673可知第2019个三角形的直角顶点为循环组的最后一个三角形的顶点,求出即可.【详解】解:∵点A(-3,0)、B(0,4),
∴AB==5,
由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12,
∵2019÷3=673,
∴△2019的直角顶点是第673个循环组的最后一个三角形的直角顶点,
∵673×12=8076,
∴△2019的直角顶点的坐标为(8076,0).故答案为(8076,0).【点睛】本题主要考查了点的坐标变化规律,仔细观察图形得到每三个三角形为一个循环组依次循环是解题的关键,也是求解的难点.图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.三、解答题(共78分)19、(1)共有8种可能;(2);(3)【分析】(1)用树状图分3次实验列举出所有情况即可;
(2)看3人在同一场地进行训练的情况数占总情况数的多少即可;
(3)看至少有两人在处场地进行训练的情况数占总情况数的多少即可.【详解】(1)由上树状图可知甲、乙、丙三名学生进行体育训练共有8种可能,(2)所有出现情况等可能,其中甲、乙、丙三名学生在同一场地进行训练有2种可能并把它记为事件A,则P(A)=(3)其中甲、乙、1丙三名学生中至少有两人在B处场地进行训练有4种可能并把它记为事件B,则P(B)=【点睛】此题考查列表法与画树状图法,解题关键在于掌握概率=所求情况数与总情况数之比.20、【分析】根据二次函数解析式的顶点式以及待定系数法,即可得到答案.【详解】把顶点代入得:,把代入得:,∴二次函数的表达式为:.【点睛】本题主要考查二次函数的待定系数法,掌握二次函数解析式的顶点式是解题的关键.21、(1)见解析;(2)PC=1.【分析】(1)证明△PAC∽△PCB,可得,即可证明PC2=PA•PB;(2)若3AC=4BC,则,由(1)可求线段PC的长.【详解】(1)∵AB是⊙O的直径,∴∠ACB=90°.∵AD⊥DC于D,且AC平分∠DAB,∴∠PDA=90°,∠DAC=∠BAC.∵∠PCA=∠PDA+∠DAC,∠PBC=∠ACB+∠BAC,∴∠PCA=∠PBC.∵∠BPC=∠CPA,∴△PAC∽△PCB,∴,∴PC2=PA•PB;(2)∵3AC=4BC,∴.设PC=4k,则PB=3k,PA=3k+7,∴(4k)2=3k(3k+7),∴k=3或k=0(舍去),∴PC=1.【点睛】本题考查了三角形相似的判定与性质,圆周角定理,解一元二次方程等知识,熟练掌握相似三角形的判定与性质是解答本题的关键.22、(1)见解析;(2)x的值为2或1时,y的值为2【分析】(1)①先判断出∠BAE=∠CEF,即可得出结论;(2)利用的相似三角形得出比例式即可建立x,y的关系式,代入即可;【详解】(1)证明:∵四边形ABCD是矩形,∴∠B=∠C=90°.∵AE⊥EF,∴∠AEF=90°=∠B.∴∠BAE+∠AEB=90°,∠FEC+∠AEB=90°,∴∠BAE=∠CEF.又∵∠B=∠C,∴△ABE∽△ECF.②∵△ABE∽△ECF.∴,∵AB=1,BC=8,BE=x,CF=y,EC=8−x,∴.∴y=−x2+x.∵y=2,−x2+x=2,解得x1=2,x2=1.∵0<x<8,∴x的值为2或1.【点睛】此题是相似形综合题,主要考查了矩形的性质,相似三角形的判定和性质,解本题的关键是用方程的思想解决问题.23、该商品定价60元.【分析】设每个商品定价x元,然后根据题意列出方程求解即可.【详解】解:设每个商品定价x元,由题意得:解得,当x=50时,进货180-10(50-52)=200,不符题意,舍去当x=60时,进货180-10(60-52)=100,符合题意.答:当该商品定价60元,进货100个.【点睛】本题主要考查一元一次方程的应用,关键是设出未知数然后列方程求解即可.24、(1);(2);(3)【解析】(1)将A,B两点的坐标代入抛物线解析式中,得到关于a,b的方程组,解之求得a,b的值,即得解析式,并化为顶点式即可;(2)过点A作AH∥y轴交BC于H,BE于G,求出直线BC,BE的解析式,继而可以求得G、H点的坐标,进一步求出GH,联立BE与抛物线方程求出点F的坐标,然后根据三角形面积公式求出△FHB的面积;(3)设点M坐标为(2,m),由题意知△OMB是直角三角形,进而利用勾股定理建立关于m的方程,求出点M的坐标,从而求出MD,最后求出时间t.【详解】(1)∵抛物线与轴交于A(1,0),B(3,0)两点,∴∴∴抛物线解析式为.(2)如图1,
过点A作AH∥y轴交BC于H,BE于G,由(1)有,C(0,-2),∵B(3,0),∴直线BC解析式为y=x-2,∵H(1,y)在直线BC上,∴y=-,∴H(1,-),∵B(3,0),E(0,-1),∴直线BE解析式为y=-x-1,∴G(1,-),∴GH=,∵直线BE:y=-x-1与抛物线y=-x2+x-2相较于F,B,∴F(,-),∴S△FHB=GH×|xG-xF|+GH×|xB-xG|=GH×|xB-xF|=××(3-)=.(3)如图2,由(1)有y=-x2+x-2,∵D为抛物线的顶点,∴D(2,),∵一动点M从点D出发,以每秒1个单位的速度平沿行与y轴方向向上运动,∴设M(2,m),(m>),∴OM2=m2+4,BM2=m2+1,OB2=9,∵∠OMB=90°,∴OM2+BM2=OB2,∴m2+4+m2+1=9,∴m=或m=-(舍),∴M(2,),∴MD=-,∴t=-.【点睛】本题考查了待定系数法求二次函数的表达式,待定系数法求一次函数表达式,角平分线上的点到两边的距离相等,勾股定理等知识点,综合性比较强,不仅要掌握性质定理,作合适的辅助线也对解题起重要作用.25、(1);(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《大学生男排队员群体凝聚力与赛前情绪及其各维度的关系》
- 《脑出血大鼠脑含水量、TNF-α、MMP-9和SOD变化及依达拉奉的干预效应》
- 墙体文字广告制作合同范本
- 《沦陷时期广州无线电播音台音乐节目研究》
- 《慢性阻塞性肺疾病合并支气管扩张患者的临床特点分析》
- 《卵巢癌患者中医体质和中医情志相关性研究》
- 车子寄售合同范本
- 《ace、cntf、actn3多态位点作为黑龙江省雪上项目运动员分子选材标记可行性研究》
- 郑州大学《智能运输系统》2023-2024学年第一学期期末试卷
- 郑州大学《知识产权法学》2023-2024学年期末试卷
- 工商企业等社会资本流转农村土地经营权申请表、农村土地经营权流转意向协议书示范文本模板
- 加热炉检修规程范本
- 固定资产清查合同
- 河道水体生态修复治理施工方案完整
- GH/T 1420-2023野生食用菌保育促繁技术规程松茸
- 职高学校班级家长会课件
- 第2课+新航路开辟后的食物物种交流+导学案 高二历史统编版(2019)选择性必修2经济与社会生活
- IATF16949第五版DFMEA管理程序+潜在失效模式及后果分析程序
- 中药对妇科疾病的作用研究
- 长沙市长郡双语实验学校人教版七年级上册期中生物期中试卷及答案
- DB63-T 241-2021 草地毒害综合治理技术规范
评论
0/150
提交评论