版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省连云港东海县联考九年级数学第一学期期末教学质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若x1,x2是一元二次方程5x2+x﹣5=0的两根,则x1+x2的值是()A. B. C.1 D.﹣12.(11·大连)某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002、s乙2=0.03,则()A.甲比乙的产量稳定 B.乙比甲的产量稳定C.甲、乙的产量一样稳定 D.无法确定哪一品种的产量更稳定3.抛物线的顶点坐标是()A. B. C. D.4.如图,在平面直角坐标系中,直线与轴、轴分别交于点、,点是轴正半轴上的一点,当时,则点的纵坐标是()A.2 B. C. D.5.四边形内接于⊙,点是的内心,,点在的延长线上,则的度数为()A.56° B.62° C.68° D.48°6.如图,平行于x轴的直线与函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为6,则k1﹣k2的值为()A.12 B.﹣12 C.6 D.﹣67.如图,已知在△ABC纸板中,AC=4,BC=8,AB=11,P是BC上一点,沿过点P的直线剪下一个与△ABC相似的小三角形纸板,如果有4种不同的剪法,那么CP长的取值范围是()A.0<CP≤1 B.0<CP≤2 C.1≤CP<8 D.2≤CP<88.如图,的半径为2,圆心的坐标为,点是上的任意一点,,且、与轴分别交于、两点,若点、点关于原点对称,则的最大值为()A.7 B.14 C.6 D.159.如图,点、、在上,,,则的度数为()A. B. C. D.10.如图所示,A,B是函数的图象上关于原点O的任意一对对称点,AC平行于y轴,BC平行于x轴,△ABC的面积为S,则()A.S=1 B.S=2 C.1<S<2 D.S>2二、填空题(每小题3分,共24分)11.甲、乙两同学在最近的5次数学测验中数学成绩的方差分别为甲,乙,则数学成绩比较稳定的同学是____________12.如图,在△ABC中,∠C=90°,BC=16cm,AC=12cm,点P从点B出发,沿BC以2cm/s的速度向点C移动,点Q从点C出发,以1cm/s的速度向点A移动,若点P、Q分别从点B、C同时出发,设运动时间为ts,当t=__________时,△CPQ与△CBA相似.13.如图,将一张画有内切圆⊙P的直角三角形纸片AOB置于平面直角坐标系中,已知点A(0,3),B(4,0),⊙P与三角形各边相切的切点分别为D、E、F.将直角三角形纸片绕其右下角的顶点依次按顺时针方向旋转,第一次旋转至图①位置,第二次旋转至图②位置,…,则直角三角形纸片旋转2018次后,它的内切圆圆心P的坐标为____.14.如图,C、D是线段AB的两个黄金分割点,且CD=1,则线段AB的长为_____.15.抛物线y=x2﹣4x﹣5与x轴的两交点间的距离为___________.16.如图,在△ABC中,AB=4,BC=7,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为__________.17.若一个圆锥的侧面展开图是一个半径为3cm,圆心角为120°的扇形,则该圆锥的侧面面积为_____cm2(结果保留π).18.一元二次方程的一个根为,另一个根为_____.三、解答题(共66分)19.(10分)如图,点在以为直径的上,的平分线交于点,过点作的平行线交的延长线于点.(1)求证:是的切线;(2)若,,求的长度.20.(6分)如图,在平面直角坐标系中,矩形的顶点,,的坐标分别,,,以为顶点的抛物线过点.动点从点出发,以每秒个单位的速度沿线段向点匀速运动,过点作轴,交对角线于点.设点运动的时间为(秒).(1)求抛物线的解析式;(2)若分的面积为的两部分,求的值;(3)若动点从出发的同时,点从出发,以每秒1个单位的速度沿线段向点匀速运动,点为线段上一点.若以,,,为顶点的四边形为菱形,求的值.21.(6分)某居民小区要在一块一边靠墙的空地上修建一个矩形花园ABCD,花园的一边靠墙,另三边用总长为32m的栅栏围成(如图所示).如果墙长16m,满足条件的花园面积能达到120m2吗?若能,求出此时BC的值;若不能,说明理由.22.(8分)某市射击队甲、乙两名队员在相同的条件下各射耙10次,每次射耙的成绩情况如图所示:平均数方差中位数甲7①.7乙②.5.4③.(1)请将右上表补充完整:(参考公式:方差)(2)请从下列三个不同的角度对这次测试结果进行分析:①从平均数和方差相结合看,__________的成绩好些;②从平均数和中位数相结合看,___________的成绩好些;(3)若其他队选手最好成绩在9环左右,现要选一人参赛,你认为选谁参加,并说明理由.23.(8分)如图,,,,.求和的长.24.(8分)如图,在正方形中,是对角线上的一个动点,连接,过点作交于点.(1)如图①,求证:;(2)如图②,连接为的中点,的延长线交边于点,当时,求和的长;(3)如图③,过点作于,当时,求的面积.25.(10分)如图,抛物线经过点,请解答下列问题:求抛物线的解析式;抛物线的顶点为点,对称轴与轴交于点,连接,求的长.点在抛物线的对称轴上运动,是否存在点,使的面积为,如果存在,直接写出点的坐标;如果不存在,请说明理由.26.(10分)观察下列各式:﹣1×=﹣1+,﹣=﹣,﹣=﹣(1)猜想:﹣×=(写成和的形式)(2)你发现的规律是:﹣×=;(n为正整数)(3)用规律计算:(﹣1×)+(﹣)+(﹣)+…+(﹣×)+(﹣×).
参考答案一、选择题(每小题3分,共30分)1、B【分析】利用计算即可求解.【详解】根据题意得x1+x2=﹣.故选:B.【点睛】本题考查一元二次方程根与系数的关系,解题的关键是熟知一元二次方程两根之和与两根之积与系数之间的关系.2、A【解析】方差是刻画波动大小的一个重要的数字.与平均数一样,仍采用样本的波动大小去估计总体的波动大小的方法,方差越小则波动越小,稳定性也越好.【详解】因为s=0.002<s=0.03,所以,甲比乙的产量稳定.故选A【点睛】本题考核知识点:方差.解题关键点:理解方差意义.3、D【分析】当时,是抛物线的顶点,代入求出顶点坐标即可.【详解】由题意得,当时,是抛物线的顶点代入到抛物线方程中∴顶点的坐标为故答案为:D.【点睛】本题考查了抛物线的顶点坐标问题,掌握求二次函数顶点的方法是解题的关键.4、D【分析】首先过点B作BD⊥AC于点D,设BC=a,根据直线解析式得到点A、B坐标,从而求出OA、OB的长,易证△BCD≌△ACO,再根据相似三角形的对应边成比例得出比例式,即可解答.【详解】解:过点B作BD⊥AC于点D,设BC=a,∵直线与轴、轴分别交于点、,∴A(-2,0),B(0,1),即OA=2,OB=1,AC=,∵,∴AB平分∠CAB,又∵BO⊥AO,BD⊥AC,∴BO=BD=1,∵∠BCD=∠ACO,∠CDB=∠COA=90°,∴△BCD≌△ACO,∴,即a:=1:2解得:a1=,a2=-1(舍去),∴OC=OB+BC=+1=,所以点C的纵坐标是.故选:D.【点睛】本题考查相似三角形的判定与性质、角平分线的性质的综合运用,解题关键是恰当作辅助线利用角平分线的性质.5、C【分析】由点I是的内心知,,从而求得,再利用圆内接四边形的外角等于内对角可得答案.【详解】∵点I是的内心∴,∵∴∵四边形内接于⊙∴故答案为:C.【点睛】本题考查了三角形的内心,圆内接四边形的性质,掌握三角形内心的性质和圆内接四边形的外角等于内对角是解题的关键.6、A【分析】△ABC的面积=•AB•yA,先设A、B两点坐标(其y坐标相同),然后计算相应线段长度,用面积公式即可求解.【详解】解:设:A、B点的坐标分别是A(,m)、B(,m),则:△ABC的面积=•AB•yA=•(﹣)•m=6,则k1﹣k2=1.故选:A.【点睛】此题主要考查了反比例函数系数的几何意义,以及图象上点的特点,求解函数问题的关键是要确定相应点坐标,通过设、两点坐标,表示出相应线段长度即可求解问题.7、B【分析】分四种情况讨论,依据相似三角形的对应边成比例,即可得到AP的长的取值范围.【详解】如图所示,过P作PD∥AB交AC于D或PE∥AC交AB于E,则△PCD∽△BCA或△BPE∽△BCA,此时0<PC<8;如图所示,过P作∠BPF=∠A交AB于F,则△BPF∽△BAC,此时0<PC<8;如图所示,过P作∠CPG=∠B交AC于G,则△CPG∽△CAB,此时,△CPG∽△CBA,当点G与点A重合时,CA1=CP×CB,即41=CP×8,∴CP=1,∴此时,0<CP≤1;综上所述,CP长的取值范围是0<CP≤1.故选B.【点睛】本题主要考查了相似三角形的性质,解决本题的关键是要熟练掌握相似三角形的性质.8、B【分析】根据“PA⊥PB,点A与点B关于原点O对称”可知AB=2OP,从而确定要使AB取得最大值,则OP需取得最大值,然后过点M作MQ⊥x轴于点Q,确定OP的最大值即可.【详解】∵PA⊥PB∴∠APB=90°∵点A与点B关于原点O对称,∴AO=BO∴AB=2OP若要使AB取得最大值,则OP需取得最大值,连接OM,交○M于点,当点P位于位置时,OP取得最小值,过点M作MQ⊥x轴于点Q,则OQ=3,MQ=4,∴OM=5∵∴当点P在的延长线于○M的交点上时,OP取最大值,∴OP的最大值为3+2×2=7∴AB的最大值为7×2=14故答案选B.【点睛】本题考查的是圆上动点与最值问题,能够找出最值所在的点是解题的关键.9、C【分析】根据平行线的性质及圆周角定理即可求解.【详解】∵,∴,∵,∴,故选:C.【点睛】本题主要考查了圆周角定理及平行线的性质,熟练运用相关知识点是解决本题的关键.10、B【分析】设点A(m,),则根据对称的性质和垂直的特点,可以表示出B、C的坐标,根据坐标关系得出BC、AC的长,从而得出△ABC的面积.【详解】设点A(m,)∵A、B关于原点对称∴B(-m,)∴C(m,)∴AC=,BC=2m∴=2故选:B【点睛】本题考查反比例函数和关于原点对称点的求解,解题关键是表示出A、B、C的坐标,从而得出△ABC的面积.二、填空题(每小题3分,共24分)11、甲【分析】根据方差的意义即方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定进行分析即可.【详解】解:由于甲<乙,则数学成绩较稳定的同学是甲.故答案为:甲.【点睛】本题考查方差的意义.注意掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.12、4.8或【分析】根据题意可分两种情况,①当CP和CB是对应边时,△CPQ∽△CBA与②CP和CA是对应边时,△CPQ∽△CAB,根据相似三角形的性质分别求出时间t即可.【详解】①CP和CB是对应边时,△CPQ∽△CBA,所以=,即=,解得t=4.8;②CP和CA是对应边时,△CPQ∽△CAB,所以=,即=,解得t=.综上所述,当t=4.8或时,△CPQ与△CBA相似.【点睛】此题主要考查相似三角形的性质,解题的关键是分情况讨论.13、(8075,1)【分析】旋转后的三角形内切圆的圆心分别为P1,P2,P3,过圆心作垂直于x轴,分别交x轴于点为E1,E2,E3,根据已知A(0,3),B(4,0),可求得AB长度和三角形内切圆的半径,依次求出OE1,OE2,OE3,OE4,OE5,OE6的长,找到规律,求得OE2018的长,即可求得直角三角形纸片旋转2018次后,它的内切圆圆心P的坐标.【详解】如图所示,旋转后的三角形内切圆的圆心分别为P1,P2,P3,过圆心作垂直于x轴,分别交x轴于点为E1,E2,E3设三角形内切圆的半径为r∵△AOB是直角三角形,A(0,3),B(4,0)∴∵⊙P是△AOB的内切圆∴即∴r=1∴BE=BF=OB-OE=4-1=3∵△BO1A1是△AOB绕其B点按顺时针方向旋转得到∴BE1=BF=3∴OE1=4+3∵A1E2=3-1=2∴OE2=4+5+2∴OE3=4+5+3+1同理可推得OE4=4+5+3+4+3,OE5=4+5+3+4+5+2,OE6=4+5+3+4+5+3+12018÷3=6722OE2018=672×(4+5+3)+(4+5+2)=8075三角形在翻折后内切圆的纵坐标不变∴P2018(8075,1)故答案为:(8075,1)【点睛】本题是坐标的规律题,考查了图形翻折的性质,翻转后图形对应的边和角不变,本题应用了三角形内切圆的性质,及三角形内切圆半径的求法,用勾股定理解直角三角形等知识.14、2+【分析】设线段AB=x,根据黄金分割点的定义可知AD=AB,BC=AB,再根据CD=AB﹣AD﹣BC可列关于x的方程,解方程即可【详解】∵线段AB=x,点C、D是AB黄金分割点,∴较小线段AD=BC=,则CD=AB﹣AD﹣BC=x﹣2×=1,解得:x=2+.故答案为:2+【点睛】本题考查黄金分割的知识,解题的关键是掌握黄金分割中,较短的线段=原线段的倍.15、1【分析】根据抛物线y=x2-4x-5,可以求得抛物线y=x2-4x-5与x轴的交点坐标,即可求得抛物线y=x2-4x-5与x轴的两交点间的距离.【详解】解:∵y=x2-4x-5=(x-5)(x+1),∴当y=0时,x1=5,x2=-1,∴抛物线y=x2-4x-5与x轴的两交点的坐标为(5,0),(-1,0),∴抛物线y=x2-4x-5与x轴的两交点间的距离为:5-(-1)=5+1=1,故答案为:1.【点睛】本题主要考查抛物线与x轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答。16、3【解析】试题解析:由旋转的性质可得:AD=AB,∴△ABD是等边三角形,∴BD=AB,∵AB=4,BC=7,∴CD=BC−BD=7−4=3.故答案为3.17、3π【详解】.故答案为:.18、【分析】利用因式分解法解得方程的两个根,即可得出另一个根的值.【详解】,变形为:,∴或,解得:;,∴一元二次方程的另一个根为:.故答案为:.【点睛】本题考查了解一元二次方程-因式分解法.三、解答题(共66分)19、(1)见解析;(2)【分析】(1)连接OD,由为的直径得到∠ACB=90,根据CD平分∠ACB及圆周角定理得到∠AOD=90,再根据DE∥AB推出OD⊥DE,即可得到是的切线;(2)过点C作CH⊥AB于H,CD交AB于M,利用勾股定理求出AB,再利用面积法求出CH,求出OH,根据△CHM∽△DOM求出HM得到AM,再利用平行线证明△CAM∽△CED,即可求出DE.【详解】(1)如图,连接OD,∵为的直径,∴∠ACB=90,∵CD平分∠ACB,∴∠ACD=45,∴∠AOD=90,即OD⊥AB,∵DE∥AB,∴OD⊥DE,∴是的切线;(2)过点C作CH⊥AB于H,CD交AB于M,∵∠ACB=90,,,∴AB=,∵S△ABC=,∴CH=,∴AH=,∴OH=OA-AH=5-3.6=1.4,∵∠CHM=∠DOM=90,∠HMC=∠DMO,∴△CHM∽△DOM,∴∴=,,∴HM=,∴AM=AH+HM=,∵AB∥DE,∴△CAM∽△CED,∴,∴DE=.【点睛】此题考查圆的性质,圆周角定理,切线的判定定理,三角形相似,勾股定理,(2)是本题的难点,利用平行线构建相似三角形求出DE的长度,根据此思路相应的添加辅助线进行证明.20、(1);(2)的值为或;(3)的值为或.【分析】(1)运用待定系数法求解;(2)根据已知,证,,可得或;(3)分两种情况:当为菱形的对角线时:由点,的横坐标均为,可得.求直线的表达式为,再求N的纵坐标,得,根据菱形性质得,可得.在中,得.同理,当为菱形的边时:由菱形性质可得,.由于,所以.结合三角函数可得.【详解】解:(1)因为,矩形的顶点,,的坐标分别,,,所以A的坐标是(1,4),可设函数解析式为:把代入可得,a=-1所以,即.(2)因为PE∥CD所以可得.由分的面积为的两部分,可得所以,解得.所以,的值为=(秒).或,解得.所以,的值为.综上所述,的值为或.(3)当为菱形的对角线时:由点,的横坐标均为,可得.设直线AC的解析式为,把A,C的坐标分别代入可得解得所以直线的表达式为.将点的横坐标代入上式,得.即.由菱形可得,.可得.在中,得.解得,,t2=4(舍).当为菱形的边时:由菱形性质可得,.由于,所以.因为.由,得.解得,,综上所述,的值为或.【点睛】考核知识点:相似三角形,二次函数,三角函数.分类讨论,数形结合,运用菱形性质和相似三角形性质或三角函数定义构造方程,再求解是解题关键.21、花园的面积能达到20m2,此时BC的值为2m.【分析】设AB=xm,则BC=(32﹣2x)m,根据矩形的面积公式结合花园面积为20m2,即可得出关于x的一元二次方程,解之即可得出x的值,结合墙的长度可确定x的值,进而可得出BC的长度.【详解】设AB=xm,则BC=(32﹣2x)m,依题意,得:x(32﹣2x)=20,整理,得:x2﹣16x+60=0,解得:x1=6,x2=1.∵32﹣2x≤16,∴x≥8,∴x=1,32﹣2x=2.答:花园的面积能达到20m2,此时BC的值为2m.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解答本题的关键.22、(1)①1.2;②7;③7.5;(2)①甲;②乙;(3)乙,理由见解析【分析】(1)根据方差公式直接计算即可得出甲的方差,然后根据折线图信息进一步分析即可求出乙的平均数以及中位数;(2)①甲乙平均数相同,而甲的方差要小,所以甲的成绩更加稳定,从而得出甲的成绩好一些;②甲乙平均数相同,而乙的中位数较大,即乙的成绩的中间量较大,所以得出乙的成绩好一些;(3)根据甲乙二人成绩的相关数据结合实际进一步分析比较即可.【详解】(1)①甲的方差为:,②乙的平均数为:,③乙的中位数为:,故答案为:①1.2;②7;③7.5;(2)①甲乙平均数相同,而甲的方差要小,所以甲的成绩更加稳定,从而得出甲的成绩好一些;②甲乙平均数相同,而乙的中位数较大,即乙的成绩的中间量较大,所以得出乙的成绩好一些;故答案为:①甲;②乙;(3)选乙,理由如下:综合看,甲发挥更稳定,但射击精准度差;乙发挥虽然不稳定,但击中高靶环次数更多,成绩逐步上升,提高潜力大,更具有培养价值,所以应选乙.【点睛】本题考查了折线统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,折线统计图能清楚地看出数据的变化情况.23、,.【分析】过C作CQ∥AD,交GH于N,交EF于M,交AB于Q,则可判断四边形AQCD为平行四边形,所以AQ=CD=6,同理可得EM=EM=CD=6,则BQ=AB-AQ=6,再利用平行线分线段成比例定理得到DE:EG:GA=CF:HF:HB=3:4:5,然后根据平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例得到MF:BQ=CF:CB=3:12,NH:BQ=CH:CB=7:12,则可计算出MF和NH,从而得到GH和EF的长【详解】解:过作,交于点,交于点,交于,如图,∵,∴四边形为平行四边形.∴,同理可得.∴.∵,∴.∵,∴,.∴,.∴,.故答案为,.【点睛】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.24、(1)见解析;(2);;(3)面积为.【分析】(1)过点M作MF⊥AB于F,作MG⊥BC于G,由正方形的性质得出∠ABD=∠DBC=45°,由角平分线的性质得出MF=MG,证得四边形FBGM是正方形,得出∠FMG=90°,证出∠AMF=∠NMG,证明△AMF≌△NMG,即可得出结论;(2)证明Rt△AMN∽Rt△BCD,得出,求出AN=2,由勾股定理得出BN==4,由直角三角形的性质得出OM=OA=ON=AN=,OM⊥AN,证明△PAO∽△NAB,得出,求出OP=,即可得出结果;(3)过点A作AF⊥BD于F,证明△AFM≌△MHN得出AF=MH,求出AF=BD=×6=3,得出MH=3,MN=2,由勾股定理得出HN=,由三角形面积公式即可得出结果.【详解】(1)证明:过点作于,作于,如图①所示:,四边形是正方形,,,,,四边形是正方形,,,,,,在和中,,;(2)解:在中,由(1)知:,,,,,在中,,,,解得:,在中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度临时工就业协议3篇
- 机械伤害应急预案
- 《包生绦虫》课件
- 《珍珠鸟教学》课件
- 2024年度广告发布合同违约责任判定
- 2024年度广告代理合同代理费用及支付方式2篇
- 二零二四年度物业委托管理合同
- 2024年度广告发布合同:甲方委托乙方发布广告的协议3篇
- 2024年度铁路建设-钢结构加工合同2篇
- 2024年度钢筋工程进度合同8篇
- 部编人教版《道德与法治》四年级上册第10课《我们所了解的环境污染》 优质课件
- 物联网网络的部署与配置
- 家庭保洁课件
- 护理工作计划及总结
- 中学生纪律教育主题班会课件
- 《企业财务会计》 课件 学习情境10 所有者权益业务核算
- 2023-2024学年河北省石家庄十七中九年级(上)期中数学试卷
- 办公设备投标方案368
- 促进“语文”跨学科融合
- 施工单位安全生产承诺书
- 2023年上海市服务业黄浦区和2035-远景目标纲要 大力发展金融服务业报告模板
评论
0/150
提交评论