版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省句容市第二中学九年级数学第一学期期末质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.下列一元二次方程中,没有实数根的是().A. B.C. D.2.如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是A.(6,0) B.(6,3) C.(6,5) D.(4,2)3.如图1,E为矩形ABCD边AD上一点,点P从点C沿折线CD﹣DE﹣EB运动到点B时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论错误的是()A.AE=8cmB.sin∠EBC=C.当10≤t≤12时,D.当t=12s时,△PBQ是等腰三角形4.一个布袋里装有10个只有颜色不同的球,其中4个黄球,6个白球.从布袋里任意摸出1个球,则摸出的球是黄球的概率为()A. B. C. D.5.已知正比例函数y=ax与反比例函数在同一坐标系中的图象如图,判断二次函数y=ax2+k在坐系中的大致图象是()A. B.C. D.6.如图直角三角板∠ABO=30°,直角项点O位于坐标原点,斜边AB垂直于x轴,顶点A在函数的y1=图象上,顶点B在函数y2=的图象上,则=()A. B. C. D.7.若二次函数的图象的顶点在第一象限,且经过点(0,1)和(-1,0),则的值的变化范围是()A. B. C. D.8.下列是中心对称图形但不是轴对称图形的是()A. B. C. D.9.如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,则∠OFA的度数是().A.15° B.20° C.25° D.30°10.如图,平面直角坐标系中,⊙P经过三点A(8,0),O(0,0),B(0,6),点D是⊙P上的一动点.当点D到弦OB的距离最大时,tan∠BOD的值是()A.2 B.3 C.4 D.5二、填空题(每小题3分,共24分)11.如图,点D、E、F分别位于△ABC的三边上,满足DE∥BC,EF∥AB,如果AD:DB=3:2,那么BF:FC=_____.12.如图,点、、…在反比例函数的图象上,点、、……在反比例函数的图象上,,且,则(为正整数)的纵坐标为______.(用含的式子表示)13.在相似的两个三角形中,已知其中一个三角形三边的长是3,4,5,另一个三角形有一边长是2,则另一个三角形的周长是.14.已知=4,=9,是的比例中项,则=____.15.“永定楼”,作为门头沟区的地标性建筑,因其坐落在永定河畔而得名.为测得其高度,低空无人机在A处,测得楼顶端B的仰角为30°,楼底端C的俯角为45°,此时低空无人机到地面的垂直距离AE为23米,那么永定楼的高度BC是______米(结果保留根号).16.如果是从四个数中任取的一个数,那么关于的方程的根是负数的概率是________.17.以原点O为位似中心,将△AOB放大到原来的2倍,若点A的坐标为(2,3),则点A的对应点的坐标为_______.18.在函数中,自变量的取值范围是______.三、解答题(共66分)19.(10分)如图,已知在菱形ABCD中,∠ABC=60°,对角线AC=8,求菱形ABCD的周长和面积.20.(6分)解方程:(x﹣2)(x﹣1)=3x﹣621.(6分)已知二次函数的图象如图所示.(1)求这个二次函数的表达式;(2)当﹣1≤x≤4时,求y的取值范围.22.(8分)如图所示,阳光透过长方形玻璃投射到地面上,地面上出现一个明亮的平行四边形,杨阳用量角器量出了一条对角线与一边垂直,用直尺量出平行四边形的一组邻边的长分别是30cm,50cm,请你帮助杨阳计算出该平行四边形的面积.23.(8分)已知,且2x+3y﹣z=18,求4x+y﹣3z的值.24.(8分)如图,为了测量山坡上一棵树PQ的高度,小明在点A处利用测角仪测得树顶P的仰角为450,然后他沿着正对树PQ的方向前进10m到达B点处,此时测得树顶P和树底Q的仰角分别是600和300,设PQ垂直于AB,且垂足为C.(1)求∠BPQ的度数;(2)求树PQ的高度(结果精确到0.1m,)25.(10分)如图,在平面直角坐标系中,矩形的顶点在轴上,在轴上,把矩形沿对角线所在的直线对折,点恰好落在反比例函数的图象上点处,与轴交于点,延长交轴于点,点刚好是的中点.已知的坐标为.(1)求反比例函数的函数表达式;(2)若是反比例函数图象上的一点,点在轴上,若以为顶点的四边形是平行四边形,请直接写出点的坐标_________.26.(10分)如图,已知直线l切⊙O于点A,B为⊙O上一点,过点B作BC⊥l,垂足为点C,连接AB、OB.(1)求证:∠ABC=∠ABO;(2)若AB=,AC=1,求⊙O的半径.
参考答案一、选择题(每小题3分,共30分)1、D【分析】分别计算出每个方程的判别式即可判断.【详解】A、∵△=4-4×1×0=4>0,∴方程有两个不相等的实数根,故本选项不符合题意;B、∵△=16-4×1×(-1)=20>0,∴方程有两个不相等的实数根,故本选项不符合题意;C、∵△=25-4×3×2=1>0,∴方程有两个不相等的实数根,故本选项不符合题意;D、∵△=16-4×2×3=-8<0,∴方程没有实数根,故本选项正确;故选:D.【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.2、B【解析】试题分析:△ABC中,∠ABC=90°,AB=6,BC=3,AB:BC=1.A、当点E的坐标为(6,0)时,∠CDE=90°,CD=1,DE=1,则AB:BC=CD:DE,△CDE∽△ABC,故本选项不符合题意;B、当点E的坐标为(6,3)时,∠CDE=90°,CD=1,DE=1,则AB:BC≠CD:DE,△CDE与△ABC不相似,故本选项符合题意;C、当点E的坐标为(6,5)时,∠CDE=90°,CD=1,DE=4,则AB:BC=DE:CD,△EDC∽△ABC,故本选项不符合题意;D、当点E的坐标为(4,1)时,∠ECD=90°,CD=1,CE=1,则AB:BC=CD:CE,△DCE∽△ABC,故本选项不符合题意.故选B.3、D【分析】观察图象可知:点P在CD上运动的时间为6s,在DE上运动的时间为4s,点Q在BC上运动的时间为12s,所以CD=6,DE=4,BC=12,然后结合三角函数、三角形的面积等逐一进行判断即可得.【详解】观察图象可知:点P在CD上运动的时间为6s,在DE上运动的时间为4s,点Q在BC上运动的时间为12s,所以CD=6,DE=4,BC=12,∵AD=BC,∴AD=12,∴AE=12﹣4=8cm,故A正确,在Rt△ABE中,∵AE=8,AB=CD=6,∴BE==10,∴sin∠EBC=sin∠AEB=,故B正确,当10≤t≤12时,点P在BE上,BP=10﹣(t﹣10)=20﹣t,∴S△BQP=•t•(20﹣t)•=﹣t2+6t,故C正确,如图,当t=12时,Q点与C点重合,点P在BE上,此时BP=20-12=8,过点P作PM⊥BC于M,在Rt△BPM中,cos∠PBM=,又∠PBM=∠AEB,在Rt△ABE中,cos∠AEB=,∴,∴BM=6.4,∴QM=12-6.4=5.6,∴BP≠PC,即△PBQ不是等腰三角形,故D错误,故选D.【点睛】本题考查动点问题的函数图象,涉及了矩形的性质,勾股定理,三角形函数,等腰三角形的判定等知识,综合性较强,解题的关键是理解题意,读懂图象信息,灵活运用所学知识解决问题.4、B【分析】用黄球的个数除以球的总个数即为所求的概率.【详解】因为一共有10个球,其中黄球有4个,
所以从布袋里任意摸出1个球,摸到白球的概率为.故选:B.【点睛】本题考查了概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.5、B【解析】根据正比例函数y=ax与反比例函数y=的函数图象可知:a<0,k>0,然后根据二次函数图象的性质即可得出答案.【详解】正比例函数y=ax与反比例函数y=的函数图象可知:a<0,k>0,
则二次函数y=ax2+k的图象开口向下,且与y轴的交点在y轴的正半轴,
所以大致图象为B图象.
故选B.【点睛】本题考查了二次函数及正比例函数与反比例函数的图象,属于基础题,关键是注意数形结合的思想解题.6、D【分析】设AC=a,则OA=2a,OC=a,根据直角三角形30°角的性质和勾股定理分别计算点A和B的坐标,写出A和B两点的坐标,代入解析式求出k1和k2的值,即可求的值.【详解】设AB与x轴交点为点C,Rt△AOB中,∠B=30°,∠AOB=90°,∴∠OAC=60°,∵AB⊥OC,∴∠ACO=90°,∴∠AOC=30°,设AC=a,则OA=2a,OC=a,∴A(a,a),∵A在函数y1=的图象上,∴k1=a×a=a2,Rt△BOC中,OB=2OC=2a,∴BC==3a,∴B(a,﹣3a),∵B在函数y2=的图象上,∴k2=﹣3a×a=﹣3a2,∴=,故选:D.【点睛】此题考查反比例函数的性质,勾股定理,直角三角形的性质,设AC=a是解题的关键,由此表示出其他的线段求出k1与k2的值,才能求出结果.7、A【分析】代入两点的坐标可得,,所以,由抛物线的顶点在第一象限可得且,可得,再根据、,可得S的变化范围.【详解】将点(0,1)代入中可得将点(-1,0)代入中可得∴∵二次函数图象的顶点在第一象限∴对称轴且∴∵,∴∴故答案为:A.【点睛】本题考查了二次函数的系数问题,掌握二次函数的性质以及各系数间的关系是解题的关键.8、A【分析】轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形;中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【详解】解:A选项:是中心对称图形但不是轴对称图形,故本选项符合题意;B选项:是中心对称图形,也是轴对称图形,故本选项不符合题意;C选项:不是中心对称图形,也不是轴对称图形,故本选项不符合题意;D选项:不是中心对称图形,也不是轴对称图形,故本选项不符合题意.故选A.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9、C【分析】先根据正方形的性质和旋转的性质得到∠AOF的度数,OA=OF,再根据等腰三角形的性质即可求得∠OFA的度数【详解】∵正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,
∴∠AOF=90°+40°=130°,OA=OF,
∴∠OFA=(180°-130°)÷2=25°.
故选C.10、B【解析】如图,连接AB,过点P作PE⊥BO,并延长EP交⊙P于点D,求出⊙P的半径,进而结合勾股定理得出答案.【详解】解:如图,连接AB,过点P作PE⊥BO,并延长EP交⊙P于点D,此时点D到弦OB的距离最大,∵A(8,0),B(0,6),∴AO=8,BO=6,∵∠BOA=90°,∴AB==10,则⊙P的半径为5,∵PE⊥BO,∴BE=EO=3,∴PE==4,∴ED=9,∴tan∠BOD==3,故选B.【点睛】本题考查了圆周角定理以及勾股定理、解直角三角形等知识,正确作出辅助线是解题关键.二、填空题(每小题3分,共24分)11、3:2【解析】因为DE∥BC,所以,因为EF∥AB,所以,所以,故答案为:3:2.12、【分析】先证明是等边三角形,求出的坐标,作高线,再证明是等边三角形,作高线,设,根据,解方程可得等边三角形的边长和的纵坐标,同理依次得出结论,并总结规律:发现点、、…在轴的上方,纵坐标为正数,点、、……在轴的下方,纵坐标为负数,可以利用来解决这个问题.【详解】过作轴于,∵,,是等边三角形,,,和,过作轴于,∵,是等边三角形,设,则,中,,,∵,解得:(舍),,,,即的纵坐标为;过作轴于,同理得:是等边三角形,设,则,中,,,∵,解得:(舍),;,,即的纵坐标为;…(为正整数)的纵坐标为:;故答案为;【点睛】本题考查了待定系数法求反比例函数解析式,等边三角形的性质和判定,直角三角形度角的性质,勾股定理,反比例函数图象上点的坐标特征,并与方程相结合解决问题.13、8或6或【分析】由一个三角形三边的长是3,4,5,可求得其周长,又由相似三角形周长的比等于相似比,分别从2与3对应,2与4对应,2与5对应,去分析求解即可求得答案.【详解】解:∵一个三角形三边的长是3,4,5,
∴此三角形的周长为:3+4+5=12,
∵在相似的两个三角形中,另一个三角形有一边长是2,
∴若2与3对应,则另一个三角形的周长是:;若2与4对应,则另一个三角形的周长是:;若2与5对应,则另一个三角形的周长是:.【点睛】本题考查相似三角形性质.熟知相似三角形性质,解答时由于对应边到比发生变化,会得到不同到结果,本题难度不大,但易漏求,属于基础题.14、±6;【解析】试题解析:是的比例中项,又解得:故答案为:15、【分析】过点A作BC的垂线,垂足为D,则∠DAC=45°,∠BAD=30°,进一步推出AD=CD=AE=米,再根据tan∠BAD==,从而求出BD的值,再由BC=BD+CD即可得到结果.【详解】解:如图所示,过点A作AD⊥BC于D,则∠DAC=45°,∠BAD=30°,∵AD⊥BC,∠DAC=45°,∴AD=CD=AE=米,在Rt△ABD中,tan∠BAD==,∴BD=AD==23(米)∴BC=BD+CD=(米)故答案为.【点睛】本题主要考查了解直角三角形的应用,解题的关键是从题目中整理出直角三角形并正确的利用边角关系求解.16、【分析】解分式方程得,由方程的根为负数得出且,即a的取值范围,再从所列4个数中找到符合条件的结果数,从而利用概率公式计算可得.【详解】解:将方程两边都乘以,得:,解得,方程的解为负数,且,则且,所以在所列的4个数中,能使此方程的解为负数的有0、-2这2个数,则关于的方程的根为负数的概率为,故答案为:.【点睛】本题主要考查了分式方程的解法和概率公式,解题的关键是掌握解分式方程的能力及随机事件的概率(A)事件可能出现的结果数所有可能出现的结果数.17、(4,6)或(-4,-6)【分析】由题意根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,即可求得答案.【详解】解:∵点A的坐标分别为(2,3),以原点O为位似中心,把△△AOB放大为原来的2倍,则A′的坐标是:(4,6)或(-4,-6).故答案为:(4,6)或(-4,-6).【点睛】本题考查位似图形与坐标的关系,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标比等于k或-k.18、【分析】根据分式有意义,分母不等于0列式计算即可得解.【详解】由题意得,x+1≠0,解得x≠−1.故答案为x≠−1.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(1)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.三、解答题(共66分)19、周长=32,面积=32.【分析】由在菱形ABCD中,∠ABC=60°,可得△ABC是等边三角形,又由对角线AC=1,即可求得此菱形的边长,进而可求出菱形的周长,再根据菱形的面积等于对角线乘积的的一半即可求出其面积.【详解】∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC=1.∴菱形ABCD的周长=4×1=32,∵BO==4,∴BD=2BO=1,∴菱形ABCD的面积=×1×=32.【点睛】本题考查了菱形面积的计算,考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键,难度一般.20、x=2或x=1【分析】将等式右边进行提取公因数3,然后移项利用因式分解法求解可得.【详解】解:∵(x﹣2)(x﹣1)﹣3(x﹣2)=0,∴(x﹣2)(x﹣1)=0,则x﹣2=0或x﹣1=0,解得x=2或x=1.故答案为:x=2或x=1.【点睛】本题考查了因式分解法.主要有提公因式法,运用公式法,分组分解法和十字相乘法.21、(1)y=﹣(x﹣2)2+1;(2)﹣≤y≤1.【分析】(1)设顶点式y=a(x﹣2)2+1,然后把(0,1)代入求出a即可得到抛物线解析式;(2)分别计算自变量为﹣1和1对应的函数值,然后根据二次函数的性质解决问题.【详解】解:(1)设抛物线解析式为y=a(x﹣2)2+1,把(0,1)代入得1a+1=1,解得a=﹣,所以抛物线解析式为y=-(x﹣2)2+1.(2)当x=﹣1时,y=﹣(﹣1﹣2)2+1=﹣;当x=1时,y=﹣(1﹣2)2+1=1,∴当-1≤x≤2时,﹣≤y≤1;当2≤x≤1时,1≤y≤1所以当﹣1≤x≤1时,y的取值范围为﹣≤y≤1.【点睛】本题考查了待定系数法求二次函数的解析式和二次函数的性质.在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出函数关系式,从而代入数值求解.22、1200cm2【解析】先利用勾股定理计算AC,然后根据平行四边形的面积求解.【详解】解如图,AB=30cm,BC=50cm,AB⊥AC,在Rt△ABC中,AC==40cm,所以该平行四边形的面积=30×40=1200(cm2).【点睛】本题主要考查了利用勾股定理求直角三角形边长和求平行四边形面积,熟练掌握方法即可求解.23、x=4,y=6,z=8.【分析】设=k,由1x+3y-z=18列出含k的等式,解出k,x,y,z,再代入所求即可.【详解】解:设=k,可得:x=1k,y=3k,z=4k,把x=1k,y=3k,z=4k代入1x+3y﹣z=18中,可得:4k+9k﹣4k=18,解得:k=1,所以x=4,y=6,z=8,把x=4,y=6,z=8代入4x+y﹣3z=16+6﹣14=﹣1.【点睛】本题考查的知识点是比例的性质,解题的关键是熟练的掌握比例的性质.24、(1)∠BPQ=30°;(2)树PQ的高度约为15.8m.【分析】(1)根据题意题可得:∠A=45°,∠PBC=60°,∠QBC=30°,AB=10m,在Rt△PBC中,根据三角形内角和定理即可得∠BPQ度数;(2)设CQ=x,在Rt△QBC中,根据30度所对的直角边等于斜边的一半得BQ=2x,由勾股定理得BC=x;根据角的计算得∠PBQ=∠BPQ=30°,由等角对等边得PQ=BQ=2x,用含x的代数式表示PC=PQ+QC=3x,AC=AB+BC=10+x,又∠A=45°,得出AC=PC,建立方程解之求出x,再将x值代入PQ代数式求之即可.【详解】(1)依题可得:∠A=45°,∠PBC=60°,∠QBC=30°,AB=10m,在Rt△PBC中,∵∠PBC=60°,∠PCB=90°,∴∠BPQ=30°;(2)设CQ=x,在Rt△QBC中,∵∠QBC=30°,∠QCB=90°,∴BQ=2x,BC=x,又∵∠PBC=60°,∠QBC=30°,∴∠PBQ=30°,由(1)知∠BPQ=30°,∴PQ=BQ=2x,∴PC=PQ+QC=3x,AC=AB+BC=10+x,又∵∠A=45°,∴AC=PC,即3x=10+x,解得:x=,∴PQ=2x=≈15.8(m),答:树PQ的高度约为15.8m.【点睛】本题考查了解直角三角形的应用,涉及到三角形的内角和定理、等腰三角形的性质、含30度角的直角三角形的性质等,准确识图是解题的关键.25、(1);(2),,(,0).【分析】(1)证得BD是CF的垂直平分线,求得,作DG⊥BF
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度猫舍宠物周边产品销售合同
- 2024年度产品销售合同标的
- 2024年度品牌宣传与推广合作合同
- 培训机构入股合同范例
- 2024年度环境治理泵车租赁合同
- 小麦托管合同模板
- 环卫临时用工合同范例
- 2024年度北京邮电大学校园巴士服务运营合同
- 2024年度供应链管理合同:跨国公司的全球物流合作协议
- 校园足球采购合同范例
- 西溪湿地简介课件
- 质量安全事故原因及案例分析课件
- 自动化导论全套课件
- 国家开放大学机电控制工程基础形考二答案
- 危重病人紧急气道管理课件
- 大学生应具备的职场技能课件
- 境外就业劳务合同范本(2篇)
- 电缆敷设与绝缘检测记录
- 341农业知识综合三考研近年考试真题汇总(含答案)
- 国家开放大学一网一平台电大《可编程控制器应用实训》形考任务1-7终结性考试题库及答案
- 可摘局部义齿修复最全讲解学习课件
评论
0/150
提交评论