版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Provisional
State
oftheGlobalClimate
2023Key
messages•Theglobalmeannear-surface
temperature
in
2023
(toOctober)wasaround1.40±0.12°Cabove
the
1850–1900
average.Based
onthedata
to
October,
itis
virtuallycertainthat2023willbethe
warmestyearin
the174-yearobserva�onalrecord,
surpassing
thepreviousjointwarmestyears,2016
at1.29
±0.12
°Cabovethe1850–1900averageand2020
at1.27±0.13
°C.Thepast
nine
years,2015–2023,willbetheninewarmestyearsonrecord.Recordmonthly
globaltemperatures
have
been
observedfor
theocean
–fromAprilthroughto
September–
and,star�ngslightly
later,
theland
–from
July
throughto
September.Theten-yearaverage2014–2023(to
October)globaltemperature
is1.19±0.12°Cabove
the1850–1900average,
thewarmest10-yearperiodonrecord.Observedconcentra�onsofthethreemaingreenhouse
gases–carbon
dioxide,methane,andnitrousoxide–reachedrecordhighlevelsin2022,thelatestyearfor
which
consolidatedglobalvaluesareavailable(1984–2022).Real-�medata
fromspecificloca�onsshow
thatlevelsofthethree
greenhousegases
con�nuedtoincrease
in
2023.••••••Oceanheat
content
reacheditshighestlevelin
2022,the
latest
available
full
yearofdatainthe65-yearobserva�onalrecord.In2023,globalmean
sealevelreachedarecordhighin
thesatelliterecord(1993to
present),reflec�ngcon�nuedocean
warmingaswellasthe
mel�ngofglaciersandice
sheets.
Therateofglobal
meansealevelinriseinthepasttenyears
(2013–2022)ismorethantwicetherateofsealevelriseinthefirstdecadeof
thesatellite
record
(1993–2002).•••Antarc�c
sea-iceextentreachedanabsoluterecordlow
forthesatellite
era(1979
to
present)inFebruary.
Iceextentwasat
arecordlow
fromJune
onwards,andtheannualmaximuminSeptemberwasfarbelowthe
previousrecordlow
maximum.GlaciersinwesternNorthAmericaandtheEuropeanAlps
experiencedanextreme
meltseason.InSwitzerland,glacierslostaround10%of
theirremainingvolume
inthe
pasttwoyears.Extremeweathercon�nuestoleadto
severe
socio-economicimpacts.Extremeheataffectedmany
partsoftheworld.WildfiresinHawaii,CanadaandEuropeledto
lossoflife,
thedestruc�on
ofhomesandlarge-scale
airpollu�on.Floodingassociatedwithextreme
rainfallfrom
MediterraneanCyclone
Daniel
affectedGreece,
Bulgaria,Türkiye,andLibyawithpar�cularlyheavy
lossof
life
inLibya.••Food
security,
popula�ondisplacementsandimpactsonvulnerable
popula�ons
con�nue
tobeofconcernin
2023,withweatherandclimate
hazardsexacerba�ngthesitua�oninmany
partsoftheworld.Extremeweatherandclimate
condi�onscon�nuedtotrigger
new,
prolonged,andsecondarydisplacementin2023
andincreasedthevulnerability
ofmanywhowere
alreadyuprootedbycomplex
mul�-causalsitua�onsofconflict
andviolence.GlobalclimateindicatorsTheglobal
climate
indicators
provideanoverviewofchangesintheclimate
system1.Thesetofinterlinkedphysicalindicatorspresentedhere
connectthechangingcomposi�on
oftheatmospherewithchangesin
energy
inthe
climate
system
and
theresponseofland,ocean,
andice.Theglobalindicators
are
basedonawiderange
of
data
setswhichcomprise
datafrom
mul�pleobservingsystems
includingsatellites
andinsitunetworks
(for
detailsondata
sets
usedinthereport,seeDatasetsandmethods).Changesto
thephysicalclimate,measuredhere
by
key
indicators,canhave
cascadingimpactsonna�onaldevelopmentand
progresstowardtheSustainable
DevelopmentGoals(SDGs)2.Forexample,
changesintheacidityortemperatureof
theoceancan
affect
marinelife,
poten�allyimpac�ngcoastalcommuni�esthatmay
depend
onthe
localcatchfortheirlivelihoodorfoodsecurity.Onthe
otherhand,climate
sciencehasacri�calrole
to
playinfacilita�ngsustainabledevelopment.Asdemonstratedby
the2023
Unitedin
Sciencereport,weather,
climate,andwater-relatedsciencessupportthe
achievementofmanyofthe
SDGs3.Recognizingtheinterconnec�onsbetweenclimate
anddevelopment
canthereforelead
to
synergis�c
ac�on—anincreasingnecessityastheworld
getsfurtheroff-track
fromachievingboththeSDGsand
ParisAgreement4.BaselinesBaselinesare
periodsof�me,usuallyspanningthreedecadesormore,thatareusedasa
fixedbenchmarkagainst
which
current
condi�onscanbecompared.Forscien�fic,policy
andprac�calreasons,several
different
baselinesare
usedinthisreport,and
thesearespecifiedinthetextandfigures.Wherepossible,the
most
recentWMOclimatological
standardnormal,1991–2020,is
usedfor
consistentrepor�ng.Forsomeindicators,
however,
itisnotpossibleto
usethe
standardnormalowingto
alackofmeasurementsduringtheearlypart
of
theperiod.
There
are
alsotwo
specificexcep�ons.First,
fortheglobalmeantemperature
�meseries–andonlyfor
theglobalmeanseries–areference
periodof1850–1900
isused.Thisisthebaselineused
inIPCCAR6WG
Ias
areferenceperiodfor
pre-industrialcondi�onsandisrelevant
forunderstandingprogressinthe
contextofthe
ParisAgreement.Second,greenhousegas
concentra�ons
can
bees�matedmuchfurtherbackin�meusinggas
bubblestrappedinicecores.Therefore,
theyear
1750
isusedinthisreportto
representpre-industrialgreenhouse
gas
concentra�ons.Greenhouse
gasesKey
message:•Observedconcentra�onsof
thethreemaingreenhouse
gases–carbon
dioxide,methane,andnitrousoxide–reachedrecordhighlevels
in2022,thelatestyearfor
which
consolidatedglobalvaluesareavailable(1984–2022).Real-�medata
fromspecificloca�onsshow
thatlevelsofthethree
greenhousegases
con�nuedtoincrease
in
2023.Atmosphericconcentra�ons
ofgreenhousegasesreflect
abalancebetweenemissionsfromhumanac�vi�es,naturalsources,andsinks.Increasinglevelsofgreenhouse
gasesin
theatmospheredue
tohumanac�vi�eshavebeen
themajordriverofclimatechangesincetheindustrialrevolu�on.Global1/view/journals/bams/102/1/BAMS-D-19–0196.1.xml2
ClimateIndicatorsandSustainableDevelopment:DemonstratingtheInterconnections()/records/item/56276-climate-indicators-and-sustainable-development-demonstrating-the-interconnections3
UnitedInScience2023()/records/item/68235-united-in-science-20234
/sites/default/files/2023–09/UN%20Climate%20SDG%20Synergies%20Report-091223B_1.pdfaveragemole
frac�onsofgreenhousegases–referredto
hereforsimplicityas
the
“concentra�on”intheatmosphere–are
calculatedfrominsitu
observa�onsmadeatmul�plesitesthroughthe
GlobalAtmosphereWatch
(GAW)ProgrammeofWMOandpartnernetworks.In2022–the
latestyearfor
whichconsolidatedglobal
figuresareavailable–atmosphericlevelsofgreenhousegasesreachednew
highs(Figure1),withgloballyaveraged
concentra�ons
forcarbondioxide
(CO
)at
417.9
±0.2partspermillion(ppm),methane
(CH
)at1923±2
partsperbillion(ppb)24andnitrousoxide(N
O)at335.8±0.1
ppb,respec�vely
150%,266%and124%of
pre-industrial2(1750)levels.Therate
ofincreaseof
CH
wasthesecondhigheston
record,a�er
2021andtherate4ofincreaseofN
Owasthehigheston
record.
TherateofincreaseofCO
at
2.2
ppmwasslightly22belowthe10-yearaverageof2.46ppm·yr-1.CO
growthrate
istypicallylowerinyearswhichstart2withLa
Niñaas2022did,andhigherinyearswhichstart
with
ElNiñoas2016did5.Real-�medatafromspecificloca�ons,includingMaunaLoa6(Hawaii,UnitedStatesofAmerica)andKennaook/CapeGrim7(Tasmania,
Australia)
indicate
thatlevelsofCO
,CH
andN
Ocon�nuedto
increasein2023.242Figure1:Top
row:Monthlygloballyaveragedmolefrac1984to2022,of(a)CO
inpartspermillion,(b)CH
inpartsperbillionand(c)N
Oinpartsper
billion.Bo242represeninsuccessiveannualmeansofmolefracCO
inpartspermillionperyear,
(e)CH
inparts24perbillionper
yearand(f)N
Oinpartsperbillionper
year.2TemperatureKey
messages:•Theglobalmeannear-surface
temperature
in
2023
(toOctober)wasaround1.40±0.12°Cabove
the
1850–1900
average.Based
onthedata
to
October,
itis
virtuallycertain
that
2023willbethe
warmestyearin
the174-yearobserva�onalrecord,surpassing
thepreviousjointwarmestyears,2016
at1.29
±0.12
°Cabovethe1850–1900averageand2020
at
1.27±0.13
°C.Thepast
nine
years,2015–2023,willbetheninewarmestyearsonrecord.•5Betts,R.,Jones,C.,Knight,J.etal.ElNiñoandarecordCO
rise.NatureClimateChange6,
806–810(2016).2/10.1038/nclimate30636/ccgg/trends/mlo.html
MeasurementsatMaunaLoa
wereinterruptedby
avolcaniceruptionandthemeasurementsitewastemporarilyrelocated
toMaunakeaobservatories
21milestothenorth.7https://www.csiro.au/greenhouse-gases/••Recordmonthly
globaltemperatures
have
been
observedfor
theocean
–fromAprilthroughto
September–
and,star�ngslightly
later,
theland
–from
July
throughto
September.Theten-yearaverage2014–2023(to
October)globaltemperature
is1.19±0.12°Cabove
the1850–1900average,
thewarmest10-yearperiodonrecord.Globalmeannear-surfacetemperature
in
2023(datato
October)was1.40
±0.12°Cabovethe1850–1900average8(Figure
2).
The
analysisisbased
onasynthesisoffiveglobal
temperature
datasets(seeDatasetsandmethods).Basedon
thedatato
October,itisvirtuallycertainthat2023
will
be
thewarmestyearinthe
174-yearinstrumentalrecord
ineachof
thefive
datasets.The
most
recent
nineyears
–2015
to
2023–will
be
theninewarmestyearsonrecord.Thetwoprevious
jointwarmestyears
were2016withananomalyof
1.29±0.12°C,and2020with
ananomalyof1.27±0.13°C.Therewere
somenoteworthy
individualmonths,with
June,July,
August,andSeptember2023
eachsurpassingthepreviousrecord
for
therespec�ve
monthby
awidemargin
inalldatasets.The
marginincreasedfrom
between0.14and
0.20°Cin
June
to
between
0.46
and0.51
°Cin
September.Thesecond-highestmarginby
whicha
Septemberrecordwasbroken
inthepast60years(theperiodcoveredbyalldatasets)was
0.02
to
0.17°Cin
1983.
Octoberwasalsorecordwarm.July
istypicallythewarmest
monthofthe
yearglobally,
andthusJuly2023became
the
all-�mewarmestmonth
onrecord.Thelong-termincreaseinglobaltemperature
isdueto
increasedconcentra�onsofgreenhousegasesintheatmosphere.Theshi�
fromLaNiña,whichlastedfrommid-2020
to
early2023,to
fullydeveloped
ElNiñocondi�onsby
September2023
(seeShort-termClimateDrivers)likely
explainssomeofthe
rise
intemperature
from
2022to2023.However,
someareasof
unusualwarmingsuchastheNortheastAtlan�c
(Figure
3)
do
not
correspondto
typicalpat
ernsof
warmingorcoolingassociatedwithElNiño.Otherfactors,whichare
s�ll
beinginves�gated,
may
also
havecontributedto
the
excep�onalwarmingfrom
2022
to
2023.Theaverageglobaltemperature
overthepastten
years,2014to2023
(data
to
October),was1.19±0.12
°Cabovethe1850–1900average,makingthe
past
tenyears
the
warmest
amongallten-yearperiodson
recordinallfive
datasets.The2014
to
2023average
isslightly
higherthanthetotalobservedwarming(1.15
[1.00to1.25]°C)fortheperiod2013to2022
es�matedby
Forster
et
al.(2023)9,consistentwithcon�nuedwarming.Global
averagesea-surfacetemperatures(SSTs)
wereat
arecordobservedhighfor
the�meof
year,star�nginthelate
NorthernHemispherespring.April
throughto
September(the
latest
monthforwhichwehave
data)
wereallat
arecord
warmhigh,andtherecordsfor
July,
August
andSeptemberwereeachbroken
by
alarge
margin(around0.21to
0.27°C).Excep�onalwarmthrela�ve
to
the1991–2020baseline,was
recordedintheeasternNorthAtlan�c,theGulfof
Mexico
andtheCaribbean,andlarge
areasoftheSouthernOcean(Figure
3,
see
alsoMarineheatwaves
andcold-spells).Globallandtemperatureanomaliesreached
recordobservedlevelsinJulyandAugust,somewhatlaterthanfor
the
SSTs,
andtheSeptemberaveragewas
arecordbyalargemarginof
0.53
to
0.72
°C.Thesecondhighestmargininthepast60years
was0.21to0.27
°Cin2002.For
the
year2023todate,most
landareaswerewarmerthanthe1991–2020average
(Figure3).
Unusualwarmthwasreportedacrosslargeareasof
theeasternU.S.,Mexico,
andCentralAmerica,aswellaswesternand8Foranomaliesrelativeto
otherbaselinesseeGlobalmeantemperatureanomaliesfor2023relativeto
other
periods.9Forsteret
al.usedanupdateoftheIPCC
methodologybasedonfourdatasets,twoofwhichareused
inthecurrentreport.Forsteretal.(2023)IndicatorsofGlobalClimateChange2022:annualupdateoflarge-scaleindicators
ofthe
state
oftheclimatesystemandhumaninfluence,EarthSyst.Sci.Data,15,2295–2327,/10.5194/essd-15–2295–2023.southernareasofSouthAmerica.WesternEurope
andwesternpartsofNorthAfrica,westernEurasia,areasofCentralandsoutheastAsia,andJapan,were
also
unusuallywarm.Figure2:Annualglobalmeantemperatureanomalies(rel–1900)from1850to2023.The2023averageisbasedondata
to
October.
Dataarefromfivedatasets,seeData
setsandmethodsfordetails.Figure3:Meannear-surfacetemperatureanomalies(differencefromthe1991–2020average)for
2023to
October.
Dataarethemedianoffivedatasetsasindicatedinthelegend,seeData
setsandmethodsfordetails.OceanIncreasinghumanemissionsofCO
andothergreenhouse
gasescause
aposi�ve
radia�ve
imbalance2at
thetopofthe
atmosphere,meaningenergyisbeing
trappedwithintheclimatesystem.
Theimbalanceleadsto
an
accumula�onof
energyintheEarthsystem
intheformof
heatthat
isdrivingglobalwarming10,11.Theocean,whichcovers
around70%oftheEarth’s
surface,absorbsheatandCO
,whichcanactto
slow
therate
of
warminginthe
atmosphere.However,
the
heatabsorbed
by2theoceanleadsto
ocean
warmingwhich,togetherwiththemel�ng
oficeonland,raisessealevels.TheoceanalsoabsorbsCO
leadingtoocean
acidifica�on12.Warmingwaters,
sealevelriseand2ocean
acidifica�onallhavesignificanteffectsontheocean,aswellastheplantsandanimalsthatliveinitandthepeoplewho
rely
uponitfortheirlivelihoods.Ocean
heat
contentKey
message:•Oceanheat
content
reacheditshighestlevelin
2022,the
latest
available
full
yearofdatainthe65-yearobserva�onalrecord.Around90%of
theenergythataccumulatedin
theEarthsystemsince1971was
storedintheocean.Asenergy
hasaccumulatedintheocean,ithaswarmedandtheheatcontentofthe
ocean(OceanHeatContent,Figure4)
hasincreased.Accordingto
aconsolidatedanalysisbased
onsevenindividualdatasets,theupper2000
m
oftheoceancon�nuedto
warmin
2022(thelatest
fullyearfor
which
wehave
data)13.Itis
expectedthatwarmingwillcon�nue
–achange
whichisirreversibleoncentennialto
millennial�mescales14,15.Oceanheatcontent
in
2022
was
thehighestonrecord,
exceedingthe
2021
value
by17
±9ZJ(Figure
4).
Alldata
sets
agree
thatocean
warmingrates
showapar�cularlystrongincreaseinthepast
two
decades.The
rateof
ocean
warmingforthe0–2000mlayer
was
0.7
±0.1
W·m-2from1971–2022,
but1.2
±0.2
W·m-2from2006–2022(theperiod
coveredbytheArgo
programme).Deep-oceanglobalwarmingbelow
2000
mdepthises�matedtobe0.07
±0.1W·m-2from1992–202216.Althoughoceanheatcontent
(OHC)hasincreasedstrongly
throughtheen�rewater
column,the
rateofwarminghasnotbeen
the
sameeverywhere17.Thestrongestwarmingintheupper2000moccurredintheSouthernOcean(60°S-35°S),NorthAtlan�c
(20°N-50°N)andSouthAtlan�c
(60°S-0°S)(Figure
5).
TheSouthern
Oceandomainisthelargestreservoirof
heat,accoun�ngfor
around36%oftheglobal
OHCincreasein
theupper2000
m
since1958.
TheAtlan�c
Oceanaccountsforapproximately33%oftheglobal0-2000mOHCincrease;thePacificOceanaround20%.Somerela�vely
smallregionsare
cooling,includingthesubpolarNorthAtlan�c
Oceanextendingfromnearthesurface
downto
adepthofover800m
(alsotheonlyareatoshowcentennialcoolingat
thesurface).
Thecontras�ngpat
ernofcooling(50°N-70°N)and
warming(20°N-50°N)intheNorthAtlan�c
hasbeenassociated
withaslowingof
the
Atlan�cMeridionalOverturningCircula�on10Hansen,J.etal.(2011).Earth’senergyimbalanceandimplications.AtmosphericChemistryandPhysics/10.5194/acp-11–13421–201111
vonSchuckmann,K.etal.(2016).An
imperativetomonitorEarth’senergyimbalance.InNatureClimateChange./10.1038/nclimate287612
StateoftheOceanReport2022|UNESCO/en/articles/state-ocean-report-202213
vonSchuckmannetal.(2020).Heatstoredin
theEarthsystem:wheredoestheenergygo?EarthSyst.Sci.Data,
12(3),2013–2041./10.5194/essd-12–2013–202014
Cheng,L.;
Trenberth,K.E.;Fasullo,J.etal.Improvedestimatesof
oceanheat
contentfrom
1960to2015,ScienceAdvances2017,3(3),e1601545./10.1126/sciadv.1601545.15
IPCC,2019:SummaryforPolicymakers.In:IPCCSpecialReporton
theOceanandCryosphereinaChangingClimate[H.-O.
Pörtner,D.C.Roberts,V.Masson-Delmotte,P.Zhai,M.Tignor,
E.Poloczanska,K.Mintenbeck,A.Alegría,M.Nicolai,A.Okem,
J.Petzold,B.Rama,N.M.Weyer(eds.)].Inpress/10.1175/2010JCLI3682.1.16
Purkey,S.G.,&Johnson,G.C.(2010).WarmingofGlobalAbyssalandDeepSouthernOceanWatersbetweenthe1990sand2000s:ContributionstoGlobalHeatandSea
LevelRiseBudgets.JournalofClimate,23(23),6336–6351./10.1175/2010JCLI3682.117
Cheng,L.,Abraham,J.,Trenberth,K.E.etal.AnotherYearofRecordHeatforthe
Oceans.Adv.Atmos.Sci.(2023)./10.1007/s00376–023–2385–2
andCheng,L.,vonSchuckmann,K.,
Abraham,J.P.etal.Pastandfutureoceanwarming.NatRevEarthEnviron3,776–794(2022).
/10.1038/s43017–022–00345–1.andlocalinterac�ons
betweentheairandsea18.Other
coolingregionsincludethe
northwestPacific,southwest
Pacificandsouthwest
IndianOceans.Figure4:1960–2021ensemblemean-standarddevioceanheatcontent(OHC)anomaliesrel–2021averagefor
the0–300m(grey),0–700m(blue),0–2000m(yellow)and700–2000mdepthlayer(green).TheensemblemeansOHCanomaliesfor
theyear2022hasbeenaddedasseparatepoints,togetherwiththeirensemblespread,andisbasedonasubsetof7datasets.Source:MercatorOceaninter19Figure5:Observedupper2000m
OHCtrendfrom1958to2022.Units:W·m–2.DataupdatedfromChengetal.(2017)20.18
Cheng,L.,vonSchuckmann,K.,Abraham,J.P.etal:Pastandfutureoceanwarming.NatureReviewsEarth&Environment.2022,/10.1038/s43017–022–00345–1.19
vonSchuckmannetal.(2020).Heatstoredin
theEarthsystem:wheredoestheenergygo?EarthSyst.Sci.Data,
12(3),2013–2041./10.5194/essd-12–2013–202020
Cheng,L.;Trenberth,K.E.;Fasullo,J.etal.Improvedestimatesof
oceanheat
contentfrom1960to2015,ScienceAdvances2017,3(3),e1601545./10.1126/sciadv.1601545Sea
levelKey
message:••In2023,
globalmean
sealevelreachedarecordhighin
thesatelliterecord(1993to
present),reflec�ngcon�nuedocean
warmingaswellasthe
mel�ngofglaciersandice
sheets.Therate
of
globalmean
sealevelinrise
inthepasttenyears
(2013–2022)ismore
thantwicetherate
of
sealevelrise
in
thefirstdecadeof
thesatellite
record(1993–2002).In2023,globalmean
sealevel(GMSL)hascon�nuedto
rise(Figure6).
TheLaNiñacondi�onsbetweenmid-2020
and
early
2023
had
onlyasmallapparent
effectonGMSL,unlike
the2011LaNiñathatledto
atemporary
decreaseintheGMSLof
several
millimetres.Therapidrise
observedin2023islikelydue
inparttothenascentEl
Niño
andislikelyto
increasefurtheras
the2023
ElNiñodevelops.Thelong-term
rate
ofsealevelrisehasmore
thandoubled
sincethestart
of
thesatelliterecord,
increasingfrom2.14
mm·yr-1between1993
and2002to4.72
mm·yr-1between
2013
and2022.FromJanuary
to
March2023,sealevels(Figure7)
were
higherthanthe
long-termaverage
(1993–2012)inthewesterntropicalPacific.Thisischaracteris�c
of
warmseawaterintheregion
associatedwithENSO-neutralcondi�ons.SealevelsintheNorth
Atlan�c
andeasterntropicalPacificwere
lowerthanthelong-term
average.Warmingof
thesurfacewatersintheeasternTropical
pacificduringtheearlystagesof
the2023El
Niño
(seeShort-termClimateDrivers)ledto
anincrease
insea
levelrela�vetothelong-term
meaninthemosteasternpart
of
theTropical
PacificbetweenAprilandJune.By
July
to
September,theEl
Niño
signature
was
clearlyvisible,withsealevelbeingaboveaveragefromthe
mid-tropicalPacific
to
thecoastsof
centralandSouthAmerica.Aboveaveragesealevelswerealsoobservedin
thetropicalandnorth-east
Atlan�c,associated
with
theanomalouswarmingintheseareasduringNorthernHemisphere
summer.Figure6:GMSLevoles
andthe
greyshadedarea
indicatestheuncertainty.Near-real-blueannotOctober2023basedon
satelliteal.Theblacklineisthebest.Redand(SourceAVISO)Figure7:3-month
averagesofal-climatology)for
(top
lebasedsealevelanomalies(rela1993–2012average,whichisthe
producttop
right)ApriltoJune,and(b)JulytoSeptember.DatadownloadedfromtheCopernicusMarineService(CMEMS,h).Marine
heatwaves
and
cold
spellsAswithheatwaves
andcold-spellsonland,marineheatwaves(MHW)andmarine
cold-spells(MCS)are
prolongedperiodsof
extreme
highorlow
temperatures
intheseasand
oceanthatcanhavearangeofconsequencesformarinelife
anddependentcommuni�es21.MHWs
havebecomemorefrequent,intense,andlongerlas�ngsincethelate20thcentury,whileMCSshavebeendecreasingby
thosesamemeasures.Satelliteretrievalsofsea-surface
temperature
are
usedto
monitorMHWsandMCSsglobally,
categorizedhereasmoderate,strong,severe,extreme,orice(fordefini�ons,seeDatasetsandmethods).ElNiño
events
tendto
cause
wide-spreadMHWs
inthe
easternTropicalPacific.This
regiondidexperience'strong'MHWs
in
2023(Figure8a,to
late
August),but
yet,
they
havecoveredasmallerareathanduringpreviousEl
Niño
events.Theareaislikelytoincrease
astheElNiño
con�nuestodevelop.Of
par�cularconcern,in2023
werethepersistent
and
wide-spread
MHWs
inthe
NorthAtlan�c
throughoutNorthernHemispheresummer
andearlyautumn.TheMediterraneanSea
wasalso
unusuallywarmrela�ve
to
thebaselineperiod
andexperiencednearcomplete
coverageof'strong'and'severe'MHWsfor
the
twel�h
consecu�veyear.Inthesouthernhemisphere,thewaterssurroundingNewZealandremained1to2°Cabovethe
long-termaveragethroughJanuarytoSeptember(~270
days).Incontrast,there
werealmostno
occurrences
of
MCSswithin
60°North
orSouth
of
theequatorin2023todate
(Figure
9a).The
global
ocean
experiencedanaverage
dailyMHW
coverageof
20%(to21
Smale,D.A.,Wernberg,T.,Oliver,E.C.J.etal.Marineheatwavesthreatenglobalbiodiversityand
theprovisionofecosystem
services.Nat.Clim.Chang.9,306–312(2019).
/10.1038/s41558–019–0412–1date,Figure8b),
wellabove
thepreviousrecordof
17%
in2016.Incontrast,theaveragedailycoverageof
MCS(Figure9b)wasonly2%,far
below2022(5%).Figure8:(a)GlobalmapshowingthehighestMHWcategory(fordefiniData
setsandmethods)experiencedateachpixelover2023(throughSeptember;referenceperiod1982–2011).Light
greyindicatesthatnoMHWoccurredin
apixelovertheenany
givenday
oftheyear;(c)Stacked
barplotshowingthecumulatheocean.Note:ThisaverageiscalculatedbydividingthecumulaMHWdaysaveragedoverthesurfaceofareaofthosepixels.(d)Stackedbarplotshowingthetotalpercentageofthesurfaceoftheocean
thatexperiencedan
MHWfrom1982topresent.DataarefromN
OpSurfaceTemperature
(OISST).Source:RobertSchlegel-Figure9:AsforFigure8butshowingmarine
cold-spellsratherthanmarineheatwaves.DataarefromNOAAOISST.
Source:RobertSchlegel.Ocean
acidificTheoceanabsorbsaroundonequarteroftheannualemissionsofanthropogenic
CO
tothe2atmosphere22,23.CO
reactswithseawaterandaltersthe
carbonatechemistry,
resul�nginadecrease2inpHreferredto
as
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 国网北京经济技术研究院招聘2025高校毕业生历年高频重点提升(共500题)附带答案详解
- 二零二五年度报刊亭智能数据分析与咨询服务合同2篇
- 国家基础地理信息中心招考聘用应届博士研究生高频重点提升(共500题)附带答案详解
- 四川省事业单位招聘-2025下半年历年高频重点提升(共500题)附带答案详解
- 四川喜德县2025年招考事业单位工作人员高频重点提升(共500题)附带答案详解
- 哈尔滨市投资促进局招考政府雇员制工作人员高频重点提升(共500题)附带答案详解
- 二零二五年度离婚协议书赔偿条款实务经验分享范文3篇
- 厦门华侨亚热带植物引种园补充招考1名非在编工作人员高频重点提升(共500题)附带答案详解
- 华亭煤业集团限责任公司2025年普通高校毕业生招聘简介高频重点提升(共500题)附带答案详解
- 北京理工大学纪委办公室、监察处招聘1名七级管理人员上岗高频重点提升(共500题)附带答案详解
- 供应商物料质量问题赔偿协议(终端)
- 单位工程质量控制程序流程图
- 部编版小学语文三年级(下册)学期课程纲要
- 化学工业有毒有害作业工种范围表
- 洼田饮水试验
- 定置定位管理一
- 商票保贴协议
- TOP-DOWN培训
- GB∕T 12703.2-2021 纺织品 静电性能试验方法 第2部分:手动摩擦法
- 电动力学答案完整
- 弱电工程保修书(共4页)
评论
0/150
提交评论