中北大学生物统计学考题(大题)课件_第1页
中北大学生物统计学考题(大题)课件_第2页
中北大学生物统计学考题(大题)课件_第3页
中北大学生物统计学考题(大题)课件_第4页
中北大学生物统计学考题(大题)课件_第5页
已阅读5页,还剩71页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

例1.1试比较下列哪一个品种的穗长整齐?(1)小麦品种农大139的穗长(单位:cm)为:9.510.09.59.110.18.28.98.510.09.19.17.99.09.08.58.5(2)津丰小麦的穗长(单位:cm)为:6.37.96.06.87.17.26.56.66.77.07.26.87.17.17.25.8(3)东方红3号小麦的穗长(单位:cm)为:11.312.011.912.012.011.010.810.911.010.510.711.012.411.411.811.51最新版整理ppt解:分别计算出3个品种的变异系数,根据变异系数的大小决定哪一个品种穗长整齐。2最新版整理ppt例2.1:一农场主租用一块河滩地,若无洪水年终可期望获利20000元,若出现洪水他将赔掉12000元。根据常年经验,出现洪灾的概率为0.4,问:(1)求出农场主期望的赢利?(2)保险公司应允若投保1000元,将补偿因洪灾所造成的损失,农场主是否买这一保险?(3)你认为保险公司收取的保险金是太多还是太少?3最新版整理ppt(1)未投保的期望赢利:E(X)=20000×0.6+(-12000)×0.4=7200(元)(2)投保后的期望赢利E(X)=(20000-1000)×0.6+(-1000)×0.4=11000(元)(3)保险公司期望获利:E(X)=1000×0.6+(-11000)×0.4=-3800(元)4最新版整理ppt例2.2做医学研究需要购买大鼠,根据研究的不同需要,可能购买A、B、C、D四个品系中的任何品系。实验室需预算下一年度在购买大鼠上的开支,下表给出每一品系50只大鼠的售价及其被利用的概率:品系每50只的售价/元被利用的概率A500.000.1B750.000.4C875.000.3D100.000.2问:(1)设X为每50只大鼠的售价,期望售价是多少?(2)方差是多少?5最新版整理ppt解:(1)(2)6最新版整理ppt例2.3每个人的一对第一号染色体分别来自祖母和外祖母的概率是多少?一位男性的X染色体来自外祖父的概率是多少?来自祖父的概率是多少?7最新版整理ppt解:(1)设A为一对第一号染色体分别来自祖母和外祖母的事件,则(2)设B为男性的X染色体来自外祖父的事件,则(3)设C为男性的X染色体来自祖父的事件,则8最新版整理ppt例2.4假如父母的基因型分别为和。他们的两个孩子都是A型血的概率是多少?他们生两个O型血女孩的概率是多少?9最新版整理ppt解:父:

母:(1)10最新版整理ppt(2)11最新版整理ppt例2.5白化病是一种隐性遗传病,当隐性基因纯合时(aa)既发病。已知杂合子(Aa)在群体中的频率为1/70,问一对夫妻生出一名白化病孩子的概率是多少?假如妻子是白化病患者,她生出白化病孩子的概率又是多少?12最新版整理ppt解:(1)已知所以

13最新版整理ppt(2)已知所以14最新版整理ppt例3.1有4对相互独立的等位基因自由组合,问有3个显性基因和5个隐性基因的组合有多少种?每种的概率是多少?这一类型总的概率是多少?15最新版整理ppt解:代入二项分布概率函数,这里ψ=1/2。答:共有56种组合,每种组合的概率为0.00390625既(1/256),这一类型总的概率为0.21875。16最新版整理ppt例3.2在4个孩子的家庭中,男孩个数服从二项分布,问男孩平均个数为多少?方差为多少?17最新版整理ppt解:18最新版整理ppt例3.3给一组雌雄等量的实验动物服用一种药物,然后对存活的动物分成5只为一组,进行抽样试验。试验结果表明,5只均为雄性的频率为1/243,问该药物对雌雄的致死作用是否一致?19最新版整理ppt解:设p为处理后雄性动物存活的概率。则所以对雄性动物的致死率高于对雌性动物的致死率。20最新版整理ppt例3.4人体染色体一半来自父亲,一半来自母亲。在减数分裂时,46条染色体随机分配到两极,若不考虑染色体内重组,父亲22条常染色体重新聚集在一极的概率是多少?12条父亲染色体和11条母亲染色体被分配到同一极的概率又是多少?常染色体的组合共有多少种?21最新版整理ppt解:(1)(2)(3)共有种。22最新版整理ppt例3.5随机变量X服从正态分布N(5,42),求P(X≤0),P(X≤10),P(0≤X≤15),P(X≥5),P(X≥15)的值。23最新版整理ppt解:24最新版整理ppt例3.6已知随机变量X服从正态分布N(0,52),求x0使得P(X≤x0)=0.025,P(X≤x0)=0.01,P(X≤x0)=0.95,P(X≥x0)=0.90。25最新版整理ppt解:26最新版整理ppt例3.7已知250株小麦的高度分布服从正态分布N(63.33,2.882),问:(1)株高在60cm以下的概率?(2)株高在69cm以上的概率?(3)株高在62~64cm之间的概率?(4)株高在多少cm以上的占全体的95%?(5)株高落在μ±1.96σ之间的概率是多少?27最新版整理ppt解:28最新版整理ppt例3.8据一个生化制药厂报告,在流水线上每8个小时的一个班中,破碎的安瓿瓶数量服从泊松分布,μ=1.5。问:(1)夜班破碎2个瓶子的概率是多少?(2)在夜班打碎2个以下的概率是多少?(3)在早班打碎2个以上的概率是多少?(4)在一天连续三班都没有破碎的概率(假设三班间是独立的)?29最新版整理ppt解:(1)(2)(3)(4)设A为每一班没有破碎的事件,则30最新版整理ppt例3.9细菌突变率是指单位时间(细菌分裂次数)内,突变事件出现的频率。然而根据以上定义直接计算突变率是很困难的。例如,向一试管内接种一定量的细菌,振荡培养后铺平板。在平板上发现8个突变菌落,这8个突变细菌究竟是8个独立的突变事件,还是一个突变细胞的8个子细胞是很难确定的。但是有一点是可以肯定的,既没有发现突变细胞的平皿一定没有突变事件出现。向20支试管中分别接种2×107个大肠杆菌,振荡培养后铺平板,同时接种T1噬菌体。结果在9个平皿中出现数量不等的抗T1噬菌体菌落,11个平皿上没有出现。已知平皿上突变菌落数服从泊松分布且细胞分裂次数近似等于铺平板时的细胞数。利用泊松分布概率函数计算抗T1突变率。31最新版整理ppt解:已知接种细胞数n即可认为是细胞分裂次数。若每一次细胞分裂的突变率为u,那么每一试管中平均有nu次突变事件发生(μ)。从泊松分布概率函数可知,无突变发生的概率f(0)=e-nu。试验结果,无突变的平皿数为11个,既f(0)=11/20=0.55。解下式:

e-nu=0.55可求出突变率u。已知n=2×107,代入上式,则

u=3×10-8。32最新版整理ppt例5.1从正态总体中抽出样本:-0.2、-0.9、-0.6、0.1。已知σ=1,设α=0.05,检验假设H0:μ=0,HA:μ<0。33最新版整理ppt解:H0:μ=0HA:μ<0先计算出,再计算出检验统计量:,尚无充分的理由拒绝H0。结论:该样本可能抽自μ=0的总体。34最新版整理ppt例5.2已知我国14岁的女生平均体重为43.38kg。从该年龄的女生中抽取10名运动员,其体重(kg)分别为:39、36、43、43、40、46、45、45、42、41。问这些运动员的平均体重与14岁的女生平均体重的差异是否显著?35最新版整理ppt解:结论:运动员的平均体重与女生的平均体重差异不显著。36最新版整理ppt例5.3饲养场规定,只有当肉鸡平均体重达到3kg时方可屠宰,现从鸡群中随机抽出20只,平均体重为2.8kg,标准差为0.2kg,问该批鸡可否屠宰?37最新版整理ppt解:结论:该批鸡尚不可屠宰。38最新版整理ppt例5.4给幼鼠喂以不同的饲料,研究每日钙的留存量(mg)是否有显著的不同,以两种方式设计实验。第一种方式:同一鼠先后喂予不同的饲料。第二种方式:甲组12只喂A饲料,乙组9只喂B饲料。以α=0.05的水平检验每种方式中,两种不同饲料钙的留存量差异是否显著,并解释。鼠号123456789A饲料33.133.126.836.339.530.933.431.528.6B饲料36.728.835.135.243.825.736.535.928.7甲组29.726.728.931.133.126.836.339.530.933.431.528.6乙组28.728.329.332.231.130.036.236.830.0

39最新版整理ppt解:40最新版整理ppt41最新版整理ppt例6.1调查265个13.5岁到14.5岁男孩的身高,其平均身高为,求μ的0.95置信区间。42最新版整理ppt解:43最新版整理ppt例6.2测定一组20个人的血压值,其平均值为121,标准差为15.93,分别求血压值在0.95和0.99的置信区间,并比较。44最新版整理ppt解:血压值在0.95的置信区间要比在0.99的置信区间要窄,说明放宽α能够缩短置信区间长度。45最新版整理ppt例6.3生产药物的原料,若失效率在5%以下还可以使用,若超过5%便不能够再使用。从这批药物中随机抽取30包,经过化验分析,其中5包是失效的,问该批药物是否还能够继续使用?46最新版整理ppt解:在30包药物中有5包是失效的,其失效率的0.95置信区间经查表为6%~35%,大于5%。因而该批药物不可使用。47最新版整理ppt例7.1某地区发现,在896名14岁以下的儿童中有52%的男孩,用0.95在置信水平,估计这群儿童的性别比是否合理。48最新版整理ppt解:

男孩女孩总数实际测定数466430896理论数44844889617.517.5306.25306.250.6840.68449最新版整理ppt例7.2用两种不同的药物治疗某种疾病,服用A药物的30人中有18人痊愈,服用B药物的30人中有25人痊愈,问两种药物的疗效有无显著差异?50最新版整理ppt解:

痊愈未愈总数A药物O1=18O2=1230T1=21.5T2=8.5B药物O3=25O4=530T3=21.5T4=8.5总数43176051最新版整理ppt例7.3用两种不同的药物治疗某种疾病,服用A药物的6人中有5人痊愈,服用B药物的6人中有3人痊愈,问两种药物的疗效有无显著差异?52最新版整理ppt解:

痊愈未愈总数A药物516B药物336总数8412606246841253最新版整理ppt例8.1下面为选育津丰小麦时所记载的部分数据:穗粒数如下表株号品系号0-1-10-2-40-3-1013944302503655336452944642365415235问穗粒数在不同品系间是否具有差异显著性?54最新版整理ppt解:数据列表如下株号0-1-10-2-40-3-1013944302503655336452944642365415235和2122191856164494447961342251271309114972572872612655最新版整理ppt方差分析表:变差来源平方和自由度均方F品系间128.93264.471.105误差7001258.33总和828.9314结论:穗粒数在不同品系间的差异不显著。56最新版整理ppt例8.2用6种培养液培养红苜蓿,重复5次。测定5盆(5次重复)苜蓿的含氮量,结果(单位:mg)如下:盆号培养法ⅠⅡⅢⅣⅤⅥ119.417.71720.714.317.3232.624.819.42114.419.432727.99.120.511.819.1432.125.211.918.811.616.953324.315.818.614.220.8用6种不同培养液培养的红苜蓿,其含氮量差异是否显著?57最新版整理ppt解:数据列表如下盆号ⅠⅡⅢⅣⅤⅥ119.417.71720.714.317.3232.624.819.42114.419.432727.99.120.511.819.1432.125.211.918.811.616.953324.315.818.614.220.8和144.1119.973.299.666.393.5596.620764.8114376.015358.249920.164395.698742.2563557.164287.532932.271139.421989.14887.291758.7112994.3658最新版整理ppt方差分析表:变差来源平方和自由度均方F培养液847.045169.4114.37**误差282.932411.79总和1129.97结论:采用6种不同培养液培养的红苜蓿含氮量差异极显著。59最新版整理ppt例8.3下表为5种溶液以及对照组的雌激素活度鉴定,指标为小鼠子宫重量。经方差分析可知,不同溶液之间的差异是显著的,做多重比较。MSe=145.78盆号培养法对照ⅠⅡⅢⅣⅤ189.984.464.488.456.465.6293.811679.890.283.279.4388.484.48873.290.465.64112.668.669.487.885.670.2Dfkr0.05r0.011822.974.0733.124.2743.214.3853.274.4663.324.53多重比较Duncan表60最新版整理ppt解:做多重比较,将各平均数按次序排列顺序号123456处理号对照ⅠⅢⅣⅡⅤ平均数96.1888.3584.978.975.470.2已知误差均方MSe=145.78,n=4,则Dfkr0.05Rkr0.01Rk1822.9717.934.0724.5733.1218.844.2725.7843.2119.384.3826.4453.2719.744.4626.9363.3220.044.5327.3561最新版整理ppt65432125.98*20.78*17.2811.287.83218.1512.959.453.45314.79.5648.73.555.2Dfkr0.05Rkr0.01Rk1822.9717.934.0724.5733.1218.844.2725.7843.2119.384.3826.4453.2719.744.4626.9363.3220.044.5327.3562最新版整理ppt例9.1选取4个小麦品种,施以选定的3种不同肥料:(NH4)2SO4,NH4NO3以及Ca(NO3)2,小麦产量(kg)如下:肥料种类(NH4)2SO4NH4NO3Ca(NO3)2品种A21.11819.4B242221.7C14.213.312.3D31.531.427.5已知不同品种与3种肥料间不存在交互作用,对表中的数据做方差分析,从方差分析的结果中,能得到什么结论?63最新版整理ppt解:数据列表

(NH4)2SO4NH4NO3Ca(NO3)2

A21.11819.458.53422.251145.57B242221.767.74583.291530.89C14.213.312.339.81584.04529.82D31.531.427.590.48172.162734.4690.884.780.9256.417761.745940.748244.647174.096544.8121963.54

2215.11970.851754.795940.74

64最新版整理ppt65最新版整理ppt方差分析表:变差来源平方和自由度均方F品种(A)442.173147.39115.15**肥料(B)12.4826.244.88误差7.6861.28总和462.3311结论:不同品种间产量性状差异极显著,4种肥料对产量的影响不显著。66最新版整理ppt例10.1儿童年龄与平均身高数据如下:年龄X/岁4.5

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论