版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
提取公因式法
分解质因数630=2×3×3×5×7分解因式2最新版整理ppt上面我们把一个多项式化成了几个整式的积的形式,像这样的式子变形叫做把这个多项式
,也叫做把这个多项式
。分解因式因式分解因式分解整式乘法因式分解与整式乘法是逆变形3最新版整理ppt⑴X(X-1)=X²-X;()⑵3a(a+b)=3a²+3ab()⑶X²+2X=X(X+2);()⑷y²-4=(y+2)(y-2);()⑸X²+2X+1=X(X+2)+1()下列从左边到右边的变形哪些是属于因式分解?√
√
XXXX4最新版整理ppt8a3b2-12ab3c的公因式是什么?最大公约数相同字母最低指数公因式4ab2一看系数二看字母三看指数观察方向5最新版整理ppt例1把8a3b2+12ab3c
分解因式.解:8a3b2+12ab3c=4ab2•2a2+4ab2•3bc=4ab2(2a2+3bc).6最新版整理ppt例2
把2a(b+c)-3(b+c)分解因式.分析:(b+c)是这个式子的公因式,可以直接提出.解:2a(b+c)–3(b+c)=(b+c)(2a-3).7最新版整理ppt做一做
按照提公因式法因式分解。8最新版整理ppt公式法(平方差)公式回顾平方差公式:完全平方公式:立方和公式:立方差公式:选学维度A10最新版整理ppt=(999+1)(999–1)试计算:9992–1=1000×998=998000平方差公式逆用因式分解:(1)x2–;(2)y2–425=(x+2)(x–2)=(y+5)(y–5)
这些计算过程中都逆用了平方差公式即:11最新版整理ppt
尝试练习(对下列各式因式分解):
①a2–9=___________________②49–n2=__________________③5s2–20t2=________________④100x2–9y2=_______________(a+3)(a–3)(7+n)(7–n)5(s+2t)(s–2t)(10x+3y)(10x–3y)12最新版整理ppt=y2–4x2=(y+2x)(y–2x)=(x2)2–12
=(x2+1)(x2–1)(1)–4x2+y2解:原式(2)x4–1解:原式(x2–1)=–(4x2–y2)=–(2x+y)(2x–y)(x+1)(x–1)因式分解一定要分解彻底!例如:113最新版整理ppt(3)6x3–54xy2解:原式=6x(x2–9y2)=6x
(x+3y)(x–3y)(4)(x+p)2–(x–q)2
解:原式=[(x+p)+(x–q)]·[(x+p)–(x–q)]=(2x+p–q)(p+q)例如:214最新版整理ppt做一做
利用平方差公式因式分解。15最新版整理ppt公式法(完全平方公式)复习回顾还记得前面学的完全平方公式吗?计算:17最新版整理ppt试计算:9992+1998+12×999×1=(999+1)2
=106完全平方公式逆用
就像平方差公式一样,完全平方公式也可以逆用,从而进行一些简便计算与因式分解。即:18最新版整理ppt完全平方式的特点:
1、必须是三项式(或可以看成三项的)
2、有两个同号的平方项
3、有一个乘积项(等于平方项底数的±2倍)简记口诀:首平方,尾平方,首尾两倍在中央。19最新版整理ppt①16x2+24x+9②–4x2+4xy–y2④4x2–8xy+4y2=(4x+3)2=–(4x2–4xy+y2)=–(2x–y)2=4(x2–2xy+y2)=4(x–y)2例如20最新版整理ppt做一做
用完全平方公式进行因式分解。21最新版整理ppt做一做
用恰当的方法进行因式分解。备选方法:提公因式法平方差公式完全平方公式22最新版整理ppt十字相乘法=–65x2–6xy–8y2试因式分解5x2–6xy–8y2。这里仍然可以用十字相乘法。15–244–10∴5x2–6xy–8y2=(x–2y)(5x+4y)简记口诀:首尾分解,交叉相乘,求和凑中。十字相乘法②随堂练习:1)4a2–9a+22)7a2–19a–63)2(x2+y2)+5xy24最新版整理ppt=173x2+11x+106x2+7x+223124+3=7∴6x2+7x+2=(2x+1)(3x+2)13522+1513∴3x2+11x+10=(x+2)(3x+5)25最新版整理ppt综合训练26最新版整理ppt知识梳理及拓展因式分解常用方法提公因式法公式法十字相乘法分组分解法拆项添项法配方法待定系数法求根法……28最新版整理ppt一、提公因式法
只需找到多项式中的公因式,然后用原多项式除以公因式,把所得的商与公因式相乘即可。往往与其他方法结合起来用。提公因式法随堂练习:1)15(m–n)+13(n–m)2)4(x+y)+4(x–3y)29最新版整理ppt二、公式法
只需发现多项式的特点,再将符合其形式的公式套进去即可完成因式分解,有时需和别的方法结合或多种公式结合。接下来是一些常用的乘法公式,可以逆用进行因式分解。30最新版整理ppt常用公式1、(a+b)(a–b)=a2–b2(平方差公式)2、(a±b)2=a2±2ab+b2(完全平方公式)3、(a+b+c)2=a2+b2+c2+2ab+2ac+2bc4、a3+b3=(a+b)(a2–ab+b2)及
a3–b3=(a–b)(a2+ab+b2)(立方和、差公式)5、(a+b)3=a3+3a2b+3ab2+b3(完全立方和公式)6、(x+p)(x+q)=x2+(p+q)x+pq7、x2+y2+z2+xy+xz+yz公式推导31最新版整理ppt这是公式x2+y2+z2+xy+xz+yz的推导过程不要与(x+y+z)2=x2+y2+z2+2xy+2xz+2yz混淆32最新版整理ppt公式法随堂练习:1)(a2–10a+25)(a2–25)2)x3+3x2+3x+1二、公式法
只需发现多项式的特点,再将符合其形式的公式套进去即可完成因式分解,有时需和别的方法结合或多种公式结合。33最新版整理ppt三、十字相乘法①前面出现了一个公式:(x+p)(x+q)=x2+(p+q)x+pq我们可以用它进行因式分解(适用于二次三项式)例1:因式分解x2+4x+3可以看出常数项3=1×3而一次项系数4=1+3∴原式=(x+1)(x+3)暂且称为p、q型因式分解34最新版整理ppt例2:因式分解x2–7x+10可以看出常数项10=(–2)×(–5)而一次项系数–7=(–2)+(–5)∴原式=(x–2)(x–5)这个公式简单的说,就是把常数项拆成两个数的乘积,而这两个数的和刚好等于一次项系数十字相乘法①随堂练习:1)a2–6a+52)a2–5a+63)x2–(2m+1)x+m2+m–235最新版整理ppt三、十字相乘法②试因式分解6x2+7x+2。这里就要用到十字相乘法(适用于二次三项式)。既然是二次式,就可以写成(ax+b)(cx+d)的形式。(ax+b)(cx+d)=acx2+(ad+bc)x+bd
所以,需要将二次项系数与常数项分别拆成两个数的积,而这四个数中,两个数的积与另外两个数的积之和刚好等于一次项系数,那么因式分解就成功了。36最新版整理ppt=173x2+11x+106x2+7x+223124+3=7∴6x2+7x+2=(2x+1)(3x+2)13522+15=1113255+6∴3x2+11x+10=(x+2)(3x+5)37最新版整理ppt=–65x2–6xy–8y2试因式分解5x2–6xy–8y2。这里仍然可以用十字相乘法。15–244–10∴5x2–6xy–8y2=(x–2y)(5x+4y)简记口诀:首尾分解,交叉相乘,求和凑中。十字相乘法②随堂练习:1)4a2–9a+22)7a2–19a–63)2(x2+y2)+5xy38最新版整理ppt四、分组分解法
要发现式中隐含的条件,通过交换项的位置,添、去括号等一些变换达到因式分解的目的。例1:因式分解ab–ac+bd–cd
。解:原式=(ab–ac)+(bd–cd)=a
(b–c)+d
(b–c)=(a+d)(b–c)还有别的解法吗?39最新版整理ppt四、分组分解法
要发现式中隐含的条件,通过交换项的位置,添、去括号等一些变换达到因式分解的目的。例1:因式分解ab–ac+bd–cd
。解:原式=(ab+bd)–(ac+cd)=b
(a+d)–c
(a+d)=(a+d)(b–c)40最新版整理ppt例2:因式分解x5+x4+x3+x2+x+1。解:原式=(x5+x4+x3)+(x2+x+1)=(x3+1)(x2+x+1)=(x+1)(x2–x+1)(x2+x+1)立方和公式分组分解法随堂练习:1)xy–xz–y2+2yz–z22)a2–b2–c2–2bc–2a+141最新版整理ppt回顾例题:因式分解x5+x4+x3+x2+x+1。另解:原式=(x5+x4)+(x3+x2)+(x+1)=(x+1)(x4+x2+1)=(x+1)(x4+2x2+1–x2)=(x+1)[(x2+1)2–x2]=
(x+1)(x2+x+1)(x2–x+1)五*、拆项添项法怎么结果与刚才不一样呢?因为它还可以继续因式分解42最新版整理ppt
拆项添项法对数学能力有着更高的要求,需要观察到多项式中应拆哪一项使得接下来可以继续因式分解,要对结果有一定的预见性,尝试较多,做题较繁琐。最好能根据现有多项式内的项猜测可能需要使用的公式,有时要根据形式猜测可能的系数。五*、拆项添项法43最新版整理ppt例因式分解x4+4解:原式=x4
+
4x2+4–4x2=(x2+2)2–(2x)2=(x2+2x+2)(x2–2x+2)都是平方项猜测使用完全平方公式完全平方公式平方差公式拆项添项法随堂练习:1)x4–23x2y2+y42)(m2–1)(n2–1)+4mn44最新版整理ppt配方法
配方法是一种特殊的拆项添项法,将多项式配成完全平方式,再用平方差公式进行分解。因式分解a2–b2+4a+2b+3。解:原式=(a2+4a+4)–(b2–2b+1)=(a+2)2–(b–1)2=(a+b+1)(a–b+3)配方法(拆项添项法)分组分解法完全平方公式平方差公式45最新版整理ppt六*、待定系数法试因式分解2x2+3xy–9y2+14x–3y+20。通过十字相乘法得到(2x–3y)(x+3y)设原式等于(2x–3y+a)(x+3y+b)通过比较两式同类项的系数可得:解得:,∴原式=(2x–3y+4)(x+3y+5)4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《健康管理与治理》课件
- 学校vi合同范例
- 公寓租赁办公合同模板
- 制作娃娃协议合同范例
- 影视合作合同范例
- 新质生产力支持智慧养老
- 工地工人雇佣合同模板
- IT行业新潮:突围之道
- 开荒保洁施工合同模板
- 在新一批援疆教师欢送会上的演讲稿
- 兽医产科学智慧树知到课后章节答案2023年下甘肃农业大学
- 虚拟化技术在教育和培训领域的应用解决方案
- 冀教版小学数学四年级上册教案7.1《垂线的认识》
- 小学四年级数学上册口算题卡
- 门禁安全检查制度范本
- 请款单(可直接打印-标准模板)
- 班主任德育工作:班主任培训讲课件
- RJ45插拔测试报告
- 2022年病历质控考核标准完整
- 教师争做新时代的“大先生”心得体会8篇
- 腰椎间盘突出健康教育课件
评论
0/150
提交评论