山西省忻州市第一中学2023年高一上数学期末检测试题含解析_第1页
山西省忻州市第一中学2023年高一上数学期末检测试题含解析_第2页
山西省忻州市第一中学2023年高一上数学期末检测试题含解析_第3页
山西省忻州市第一中学2023年高一上数学期末检测试题含解析_第4页
山西省忻州市第一中学2023年高一上数学期末检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省忻州市第一中学2023年高一上数学期末检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知函数,若对任意,总存在,使得,则实数的取值范围是()A. B.C. D.2.若过,两点的直线的倾斜角为,则y等于()A. B.C.1 D.53.已知直二面角,点,,为垂足,,,为垂足.若,则到平面的距离等于A. B.C. D.14.已知原点到直线的距离为1,圆与直线相切,则满足条件的直线有A.1条 B.2条C.3条 D.4条5.若是的一个内角,且,则的值为A. B.C. D.6.已知函数对任意实数都满足,若,则A.-1 B.0C.1 D.27.下列函数既不是奇函数,也不是偶函数,且在上单调递增是A. B.C. D.8.已知,,,则下列关系中正确的是A. B.C. D.9.直线的倾斜角A. B.C. D.10.《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约米,肩宽约为米,“弓”所在圆的半径约为米,你估测一下掷铁饼者双手之间的距离约为(参考数据:,)()A.米 B.米C.米 D.米11.在中,下列关系恒成立的是A. B.C. D.12.以下给出的是计算的值的一个程序框图,其中判断框内应填入的条件是A.B.C.D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.当时,,则a的取值范围是________.14.设平行于轴的直线分别与函数和的图像相交于点,,若在函数的图像上存在点,使得为等边三角形,则点的纵坐标为_________.15.已知函数,那么_________.16.定义在上的函数满足,且时,,则________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知.(1)求函数的最小正周期及单调递减区间;(2)求函数在区间上的最大值和最小值.18.已知函数f(x)=sin(2x+π(1)列表,描点,画函数f(x)的简图,并由图象写出函数f(x)的单调区间及最值;(2)若f(x1)=f(x2)19.在平面直角坐标系中,已知,.(Ⅰ)若,求实数的值;(Ⅱ)若,求实数的值.20.已知函数为偶函数(1)求实数的值;(2)记集合,,判断与的关系;(3)当时,若函数值域为,求的值.21.(1)已知,先化简f(α),再求f()的值;(2)若已知sin(-x)=,且0<x<,求sin的值.22.已知(1)设,求的值域;(2)设,求的值

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】先将不等式转化为对应函数最值问题:,再根据函数单调性求最值,最后解不等式得结果.【详解】因为对任意,总存在,使得,所以,因为当且仅当时取等号,所以,因为,所以.故选:C.【点睛】对于不等式任意或存在性问题,一般转化为对应函数最值大小关系,即;,2、B【解析】根据斜率的定义和坐标表达式即可求得结果.【详解】,.【点睛】本题考查斜率的定义和坐标表达式,注意认真计算,属基础题.3、C【解析】如图,在平面内过点作于点因为为直二面角,,所以,从而可得.又因为,所以面,故的长度就是点到平面的距离在中,因为,所以因为,所以.则在中,因为,所以.因为,所以,故选C4、C【解析】由已知,直线满足到原点的距离为,到点的距离为,满足条件的直线即为圆和圆的公切线,因为这两个圆有两条外公切线和一条内公切线.故选C.考点:相离两圆的公切线5、D【解析】是的一个内角,,又,所以有,故本题的正确选项为D.考点:三角函数诱导公式的运用.6、A【解析】由题意首先确定函数的周期性,然后结合所给的关系式确定的值即可.【详解】由可得,据此可得:,即函数是周期为2的函数,且,据此可知.本题选择A选项.【点睛】本题主要考查函数的周期性及其应用等知识,意在考查学生的转化能力和计算求解能力.7、C【解析】是偶函数,是奇函数,和既不是奇函数也不是偶函数,在上是减函数,是增函数,故选C8、C【解析】利用函数的单调性、正切函数的值域即可得出【详解】,,∴,又∴,则下列关系中正确的是:故选C【点睛】本题考查了指对函数的单调性、三角函数的单调性的应用,属于基础题9、A【解析】先求得直线的斜率,然后根据斜率和倾斜角的关系,求得.【详解】可得直线的斜率为,由斜率和倾斜角的关系可得,又∵∴故选:A.【点睛】本小题主要考查直线倾斜角与斜率,属于基础题.10、C【解析】先计算弓所在的扇形的弧长,算出其圆心角后可得双手之间的距离.【详解】弓形所在的扇形如图所示,则的长度为,故扇形的圆心角为,故.故选:C.11、D【解析】利用三角函数诱导公式,结合三角形的内角和为,逐个去分析即可选出答案【详解】由题意知,在三角形ABC中,,对A选项,,故A选项错误;对B选项,,故B选项错误;对C选项,,故C选项错误;对D选项,,故D选项正确.故选D.【点睛】本题考查了三角函数诱导公式,属于基础题12、A【解析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S的值【详解】程序运行过程中,各变量值如下表所示:第一圈:S=1,k=2,第二圈:S=1+,k=3,第三圈:S=1++,k=4,…依此类推,第十圈:S=1+,k=11退出循环其中判断框内应填入的条件是:k≤10,故选A【点睛】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】分类讨论解一元二次不等式,然后确定参数范围【详解】,若,则或,此时时,不等式成立,若,则或,要满足题意,则,即综上,故答案为:14、【解析】设直线的方程为,求得点,坐标,得到,取的中点,连接,根据三角形为等边三角形,表示出点坐标,根据点在函数的图象上,得到关于的方程,求出,进而可得点的纵坐标.【详解】设直线的方程为,由,得,所以点,由,得,所以点,从而,如图,取的中点,连接,因为为等边三角形,则,所以,,则点,因为点在函数的图象上,则,解得,所以点的纵坐标为.故答案为:.【点睛】关键点点睛:求解本题的关键在于先由同一参数表示出点坐标,再代入求解;本题中,先设直线,分别求出,坐标,得到等边三角形的边长,由此用表示出点坐标,即可求解.15、3【解析】首先根据分段函数求的值,再求的值.【详解】,所以.故答案为:316、【解析】根据题意可得,再根据对数运算法则结合时的解析式,即可得答案;【详解】由可得函数为奇函数,由可得,故函数的周期为4,所以,因为,所以..故答案为:.【点睛】本题考查函数奇偶性及对数的运算法则,考查逻辑推理能力、运算求解能力.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)最小正周期,单调递减区间为;(2)最小值为0;最大值为3.【解析】(1)将函数化为,可得最小正周期为,将作为一个整体,代入正弦函数的递减区间可得结果.(2)由,得,结合正弦函数的图象可得所求最值试题解析:(1)∴函数的最小正周期由,,得,,∴函数的单调递减区间为(2)∵,∴∴,∴当,即时,取得最小值为0;当,即时,取得最大值为3.18、(1)图象见解析,在[-π4,π8]、[5π(2)答案见解析.【解析】(1)根据解析式,应用五点法确定点坐标列表,进而描点画图象,由图象判断单调性、最值.(2)讨论f(x1)=f(x2【小问1详解】由解析式可得:x--π3π5π3πf(x)-010-1-∴f(x)的图象如下图示:∴f(x)在[-π4,π8]、[【小问2详解】1、若f(x1)=f(x2)∈(-22、若f(x1)=f(当x1+x当x1+x当x1+x3、若f(x1)=f(x2)∈(-1,-219、(Ⅰ);(Ⅱ).【解析】(Ⅰ)求出向量和的坐标,然后利用共线向量的坐标表示得出关于的方程,解出即可;(Ⅱ)由得出,利用向量数量积的坐标运算可得出关于实数的方程,解出即可.【详解】(Ⅰ),,,,,,解得;(Ⅱ),,,解得.【点睛】本题考查平面向量的坐标运算,考查利用共线向量和向量垂直求参数,考查计算能力,属于基础题.20、(1);(2);(3).【解析】(1)由恒成立,可得恒成立,进而得实数的值;(2)化简集合,得;(3)先判定的单调性,再求出时的范围,与等价即可求出实数的值.试题解析:(1)为偶函数,.(2)由(1)可知:,当时,;当时,.,.(3).上单调递增,,为的两个根,又由题意可知:,且.考点:1、函数的奇偶性及值域;2、对数的运算.21、(1),

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论