




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省壶关县2023-2024学年数学九上期末质量跟踪监视模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.由若干个相同的小正方体搭成的一个几何体的俯视图和左视图如图所示,则搭成这个几何体的小正方体的个数最多有()A.5个 B.6个 C.7个 D.8个2.已知函数的部分图像如图所示,若,则的取值范围是()A. B. C. D.3.向上发射一枚炮弹,经秒后的高度为,且时间与高度的关系式为,若此时炮弹在第秒与第秒时的高度相等,则在下列哪一个时间的高度是最高的()A.第秒 B.第秒 C.第秒 D.第秒4.如图,已知为的直径,点,在上,若,则()A. B. C. D.5.用配方法解方程,下列配方正确的是()A. B.C. D.6.已知反比例函数,则下列结论正确的是()A.点(1,2)在它的图象上B.其图象分别位于第一、三象限C.随的增大而减小D.如果点在它的图象上,则点也在它的图象上7.如图,在△ABC中,点D、E分别在边AB、AC上,则在下列五个条件中:①∠AED=∠B;②DE∥BC;③=;④AD·BC=DE·AC;⑤∠ADE=∠C,能满足△ADE∽△ACB的条件有()A.1个 B.2 C.3个 D.4个8.如图,,两条直线与三条平行线分别交于点和.已知,则的值为()A. B. C. D.9.已知反比例函数y=的图象经过点P(﹣1,2),则这个函数的图象位于()A.二、三象限 B.一、三象限 C.三、四象限 D.二、四象限10.如图,点O为平面直角坐标系的原点,点A在x轴上,△OAB是边长为4的等边三角形,以O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA′B′,那么点A′的坐标为()A.(-2,2) B.(-2,4) C.(-2,2) D.(2,2)11.如图,直线AC,DF被三条平行线所截,若DE:EF=1:2,AB=2,则AC的值为()A.6 B.4 C.3 D.12.在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.二、填空题(每题4分,共24分)13.已知,则_______.14.如图,△ABC中,AE交BC于点D,∠C=∠E,AD=4,BC=8,BD:DC=5:3,则DE的长等于__________________.15.如图,正三角形AFG与正五边形ABCDE内接于⊙O,若⊙O的半径为3,则的长为______________.16.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD从中任选两个条件,能使四边形ABCD为平行四边形的选法有________种17.如图,正五边形内接于,为上一点,连接,则的度数为__________.18.如图,在中,,,,点D、E分别是AB、AC的中点,CF是的平分线,交ED的延长线于点F,则DF的长是______.三、解答题(共78分)19.(8分)如图,已知一次函数y=kx+b的图象与x轴,y轴分别相交于A,B两点,且与反比例函数y=交于点C,D.作CE⊥x轴,垂足为E,CF⊥y轴,垂足为F.点B为OF的中点,四边形OECF的面积为16,点D的坐标为(4,﹣b).(1)求一次函数表达式和反比例函数表达式;(2)求出点C坐标,并根据图象直接写出不等式kx+b≤的解集.20.(8分)如图,反比例函数的图象与一次函数的图象相交于点和点.(1)求反比例函数的解析式和点的坐标;(2)连接,,求的面积.(3)结合图象,请直接写出使反比例函数值小于一次函数值的自变量的取值范围.21.(8分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为15m的住房墙,另外三边用27m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长,宽分别为多少米时,猪舍面积为96m2?22.(10分)如图,在△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,DE⊥BC,垂足为E.(1)求证:DE是⊙O的切线;(2)若DG⊥AB,垂足为点F,交⊙O于点G,∠A=35°,⊙O半径为5,求劣弧DG的长.(结果保留π)23.(10分)如图是某货站传送货物的平面示意图.原传送带与地面的夹角为,,为了缩短货物传送距离,工人师傅欲增大传送带与地面的夹角,使其由改为,原传送带长为.求:(1)新传送带的长度;(2)求的长度.24.(10分)已知线段AC(1)尺规作图:作菱形ABCD,使AC是菱形的一条对角线(保留作图痕迹,不要求写作法);(2)若AC=8,BD=6,求菱形的边长.25.(12分)如图,请在下列四个论断中选出两个作为条件,推出四边形ABCD是平行四边形,并予以证明(写出一种即可).①AD∥BC;②AB=CD;③∠A=∠C;④∠B+∠C=180°.已知:在四边形ABCD中,____________.求证:四边形ABCD是平行四边形.26.如图,是直径AB所对的半圆弧,点P是与直径AB所围成图形的外部的一个定点,AB=8cm,点C是上一动点,连接PC交AB于点D.小明根据学习函数的经验,对线段AD,CD,PD,进行了研究,设A,D两点间的距离为xcm,C,D两点间的距离为cm,P,D两点之间的距离为cm.小明根据学习函数的经验,分别对函数,随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(2)按照下表中自变量x的值进行取点、画图、测量,分别得到了,与x的几组对应值:x/cm0.002.002.003.003.204.005.006.006.502.008.00/cm0.002.042.093.223.304.004.423.462.502.530.00/cm6.245.294.353.463.302.642.00m2.802.002.65补充表格;(说明:补全表格时,相关数值保留两位小数)(2)在同一平面直角坐标系中,描出补全后的表中各组数值所对应的点,并画出函数的图象:(3)结合函数图象解决问题:当AD=2PD时,AD的长度约为___________.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据所给出的图形可知这个几何体共有3层,3列,先看第一层正方体可能的最多个数,再看第二、三层正方体的可能的最多个数,相加即可.【详解】根据主视图和左视图可得:这个几何体有3层,3列,最底层最多有2×2=4个正方体,第二层有2个正方体,第三层有2个正方体则搭成这个几何体的小正方体的个数最多是4+2+2=8个;故选:D.【点睛】此题考查了有三视图判断几何体,关键是根据主视图和左视图确定组合几何体的层数及列数.2、C【分析】根据抛物线的对称性确定抛物线与x轴的另一个交点为(−3,1),然后观察函数图象,找出抛物线在x轴上方的部分所对应的自变量的范围即可.【详解】∵y=ax2+bx+c的对称轴为直线x=−1,与x轴的一个交点为(1,1),∴抛物线与x轴的另一个交点为(−3,1),∴当−3<x<1时,y>1.故选:C.【点睛】此题主要考查二次函数的图像与性质,解题的关键是根据函数对称轴找到抛物线与x轴的交点.3、B【分析】二次函数是一个轴对称图形,到对称轴距离相等的两个点所表示的函数值也是一样的.【详解】根据题意可得:函数的对称轴为直线x=,即当x=10时函数达到最大值.故选B.【点睛】本题主要考查的是二次函数的对称性,属于中等难度题型.理解“如果两个点到对称轴距离相等,则所对应的函数值也相等”是解决这个问题的关键.4、C【分析】连接AD,根据同弧所对的圆周角相等,求∠BAD的度数,再根据直径所对的圆周角是90°,利用内角和求解.【详解】解:连接AD,则∠BAD=∠BCD=28°,∵AB是直径,∴∠ADB=90°,∴∠ABD=90°-∠BAD=90°-28°=62°.故选:C.【点睛】本题考查圆周角定理,运用圆周角定理是解决圆中角问题的重要途径,直径所对的圆周角是90°是圆中构造90°角的重要手段.5、C【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数的绝对值一半的平方.【详解】解:等式两边同时加上一次项系数的绝对值一半的平方22,,∴;故选:C.【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.6、D【分析】根据反比例函数图象上点的坐标特征以及反比例函数的性质解答即可.【详解】解:∵∴图象在二、四象限,y随x的增大而增大,选项A、B、C错误;∵点在函数的图象上,∴∵点横纵坐标的乘积∴则点也在函数的图象上,选项D正确.故选:D.【点睛】本题考查的知识点是反比例函数的的性质,掌握反比例函数图象的特征及其性质是解此题的关键.7、D【分析】根据相似三角形的判定定理判断即可.【详解】解:①由∠AED=∠B,∠A=∠A,则可判断△ADE∽△ACB;②DE∥BC,则有∠AED=∠C,∠ADE=∠B,则可判断△ADE∽△ACB;③=,∠A=∠A,则可判断△ADE∽△ACB;④AD·BC=DE·AC,可化为,此时不确定∠ADE=∠ACB,故不能确定△ADE∽△ACB;⑤由∠ADE=∠C,∠A=∠A,则可判断△ADE∽△ACB;所以能满足△ADE∽△ACB的条件是:①②③⑤,共4个,故选:D.【点睛】此题考查了相似三角形的判定,关键是掌握相似三角形的三种判定定理.8、C【分析】由得设可得答案.【详解】解:,,设则故选C.【点睛】本题考查的是平行线分线段成比例,比例线段,掌握这两个知识点是解题的关键.9、D【分析】此题涉及的知识点是反比例函数的图像与性质,根据点坐标P(﹣1,2)带入反比例函数y=中求出k值就可以判断图像的位置.【详解】根据y=的图像经过点P(-1,2),代入可求的k=-2,因此可知k<0,即图像经过二四象限.故选D【点睛】此题重点考察学生对于反比例函数图像和性质的掌握,把握其中的规律是解题的关键.10、A【分析】作BC⊥x轴于C,如图,根据等边三角形的性质得OA=OB=4,AC=OC=2,∠BOA=60°,则易得A点坐标和O点坐标,再利用勾股定理计算出BC=2,然后根据第二象限点的坐标特征可写出B点坐标;由旋转的性质得∠AOA′=∠BOB′=60°,OA=OB=OA′=OB′,则点A′与点B重合,于是可得点A′的坐标.【详解】解:作BC⊥x轴于C,如图,∵△OAB是边长为4的等边三角形∴OA=OB=4,AC=OC=1,∠BOA=60°,∴A点坐标为(-4,0),O点坐标为(0,0),在Rt△BOC中,BC=,∴B点坐标为(-2,2);∵△OAB按顺时针方向旋转60°,得到△OA′B′,∴∠AOA′=∠BOB′=60°,OA=OB=OA′=OB′,∴点A′与点B重合,即点A′的坐标为(-2,2),故选:A.【点睛】本题考查了坐标与图形变化-旋转:记住关于原点对称的点的坐标特征;图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°;解决本题的关键是正确理解题目,按题目的叙述一定要把各点的大致位置确定,正确地作出图形.11、A【分析】根据平行线分线段成比例定理得到比例式,求出BC,计算即可.【详解】解:∵l1∥l2∥l3,∴,又∵AB=2,∴BC=4,∴AC=AB+BC=1.
故选:A.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.12、C【分析】根据轴对称图形和中心对称图形的定义进行分析即可.【详解】A、不是轴对称图形,也不是中心对称图形.故此选项错误;B、不是轴对称图形,也不是中心对称图形.故此选项错误;C、是轴对称图形,也是中心对称图形.故此选项正确;D、是轴对称图形,但不是中心对称图形.故此选项错误.故选C.【点睛】考点:1、中心对称图形;2、轴对称图形二、填空题(每题4分,共24分)13、-5【分析】设,可用参数表示、,再根据分式的性质,可得答案.【详解】解:设,得,,,故答案为:.【点睛】本题考查了比例的性质,利用参数表示、可以简化计算过程.14、【解析】试题分析:∵∠ADC=∠BDE,∠C=∠E,∴△ADC∽△BDE,∴,∵AD=4,BC=8,BD:DC=5:3,∴BD=5,DC=3,∴DE=.故选B.考点:相似三角形的判定与性质.15、【分析】连接OB,OF,根据正五边形和正三角形的性质求出∠BAF=24°,再由圆周角定理得∠BOF=48°,最后由弧长公式求出的长.【详解】解:连接OB,OF,如图,根据正五边形、正三角形和圆是轴对称图形可知∠BAF=∠EAG,∵△AFG是等边三角形,∴∠FAG=60°,∵五边形ABCDE是正五边形,∴∠BAE=,∴∠BAF=∠EAG=(∠BAE-∠FAG)=×(108°-60°)=24°,∴∠BOF=2∠BAF=2×24°=48°,∵⊙O的半径为3,∴的弧长为:故答案为:【点睛】本题主要考查正多边形与圆、弧长公式等知识,得出圆心角度数是解题关键.16、1.【分析】根据题目所给条件,利用平行四边形的判定方法分别进行分析即可.【详解】解:由题意:①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD为平行四边形;①③可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;①④可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;
∴有1种可能使四边形ABCD为平行四边形.故答案是1.【点睛】此题主要考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理.17、【分析】连接OA,OE.根据正五边形求出∠AOE的度数,再根据圆的有关性质即可解答【详解】如图,连接OA,OE.∵ABCDE是正五边形,∴∠AOE==72°,∴∠APE=∠AOE=36°【点睛】本题考查了正多边形和圆的有关性质,解题的关键是熟练掌握想关性质并且灵活运用题目的已知条件.18、4【分析】勾股定理求AC的长,中位线证明EF=EC,DE=2.5即可解题.【详解】解:在中,,,∴AC=13(勾股定理),∵点、分别是、的中点,∴DE=2.5(中位线),DE∥BC,∵是的平分线,∴∠ECF=∠BCF=∠EFC,∴EF=EC=6.5,∴DF=6.5-2.5=4.【点睛】本题考查了三角形的中位线,等角对等边,勾股定理,中等难度,证明EF=EC是解题关键.三、解答题(共78分)19、(1)y=﹣2x+1;(2)﹣2≤x<0或x≥1.【分析】(1)由矩形的面积求得m=﹣16,得到反比例函数的解析式,把D(1,﹣b)代入求得的解析式得到D(1,﹣1),求得b=1,把D(1,﹣1)代入y=kx+1,即可求得一次函数的解析式;(2)由一次函数的解析式求得B的坐标为(0,1),根据题意OF=8,C点的纵坐标为8,代入反比例函数的解析式求得横坐标,得到C的坐标,根据C、D的坐标结合图象即可求得不等式kx+b≤的解集.【详解】解:(1)∵CE⊥x轴,CF⊥y轴,∵四边形OECF的面积为16,∴|m|=16,∵双曲线位于二、四象限,∴m=﹣16,∴反比例函数表达式为y=,将x=1代入y=得:y=﹣1,∴D(1,﹣1),∴b=1将D(1,﹣1)代入y=kx+1,得k=﹣2∴一次函数的表达式为y=﹣2x+1;(2)∵y=﹣2x+1,∴B(0,1),∴OF=8,将y=8代入y=﹣2x+1得x=﹣2,∴C(﹣2,8),∴不等式kx+b≤的解集为﹣2≤x<0或x≥1.【点睛】本题主要考查了反比例函数与一次函数的交点问题,用到的知识点是待定系数法求反比例函数与一次函数的解析式,这里体现了数形结合的思想,关键是根据反比例函数与一次函数的交点求出不等式的解集.20、(1),点的坐标为;(2);(3)或.【分析】(1)利用待定系数法求解析式,令y值相等求点B坐标;(2)数形结合求面积;(3)数形结合,利用图像解不等式【详解】解:(1)把代入得,∴.∴反比例函数的解析式为.联立解得∴点的坐标为.(2)设直线与轴交于点.可知点的坐标为,∴.∴.(3)当或时,反比例函数值小于一次函数值.【点睛】本题考查了反比例函数和一次函数的综合应用,数形结合思想是解题的关键21、所围矩形猪舍的长为1m、宽为8m【分析】设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(27﹣2x+1)m.根据矩形的面积公式建立方程求出其解就可以了.【详解】解:设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(27﹣2x+1)m,由题意得x(27﹣2x+1)=96,解得:x1=6,x2=8,当x=6时,27﹣2x+1=16>15(舍去),当x=8时,27﹣2x+1=1.答:所围矩形猪舍的长为1m、宽为8m.【点睛】本题考查了列一元二次方程解实际问题的运用,矩形的面积公式的运用及一元二次方程的解法的运用,解答时寻找题目的等量关系是关键.22、(1)见解析;(2).【分析】(1)连接BD,OD,求出OD∥BC,推出OD⊥DE,根据切线判定推出即可.(2)求出∠BOD=∠GOB,从而求出∠BOD的度数,根据弧长公式求出即可.【详解】解:(1)证明:连接BD、OD,∵AB是⊙O直径,∴∠ADB=90°.∴BD⊥AC.∵AB=BC,∴AD=DC.∵AO=OB,∴DO∥BC.∵DE⊥BC,∴DE⊥OD.∵OD为半径,∴DE是⊙O切线.(2)连接OG,∵DG⊥AB,OB过圆心O,∴弧BG=弧BD.∵∠A=35°,∴∠BOD=2∠A=70°.∴∠BOG=∠BOD=70°.∴∠GOD=140°.∴劣弧DG的长是.23、(1);(2)【分析】(1)在构建的直角三角形中,首先求出两个直角三角形的公共直角边,进而在Rt△ACD中,求出AC的长.(2)利用求出BD,利用求出CD,故可求解.【详解】解:(1)∵,,∴在中,,在中,,∴.(2)在中,,在中,,∴.【点睛】考查了坡度坡角问题,应用问题尽管题型千变万化,但关键是设法化归为解直角三角形问题,必要时应添加辅助线,构造出直角三角形.在两个直角三角形有公共直角边时,先求出公共边的长是解答此类题的基本思路.24、(1)详见解析;(2)1.【解析】(1)先画出AC的垂直平分线,垂足为O,然后截取OB=OD即可;(2)根据菱形的性质及勾股定理即可求出边长.【详解】解:(1)如图所示,四边形ABCD即为所求作的菱形;(2)∵AC=8,BD=6,且四边形ABCD是菱形,∴AO=4,DO=3,且∠AOD=90°则AD===1.【点睛】本题主要考查菱形的画法及性质,掌握菱形的性质是解题的关键.25、已知:①③(或①④或②④或③④),证明见解析.【解析】试题分析:根据平行四边形的判定方法就可以组合出不同的结论,然后即可证明.其中解法一是证明两组对角相等的四边形是平行四边形;解法二是证明两组对边平行的四边形是平行四边形;解法三是证明一组对边平行且相等的四边形是平行四边形;解法四是证明两组对角相等的四边形是平行四边形.试
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国3D人工眼球行业发展监测及投资战略研究报告
- 硅锰合金项目可行性研究报告
- 2025年电子计步器实验分析仪器项目建议书
- 轴瓦项目立项申请报告(参考模板)
- 2025年度二手房买卖合同公证与产权登记服务协议
- Module 1 Unit 3 What Can You Hear(教学设计)-2023-2024学年牛津上海版(试用本)英语二年级下册
- 2025年中国压缩机六缸体行业市场发展前景及发展趋势与投资战略研究报告
- 2025年度正规模具加工与数字化制造合同
- 2025-2030年铁矿项目可行性研究报告
- 2025年1,6-己二醇项目规划申请报告模板
- 一年级下册劳动教案
- 付款申请英文模板
- 大同大学综测细则
- 生活会前谈心谈话提纲
- 比较思想政治教育(第二版)第十二章课件
- 普通外科常见疾病临床路径
- 人教版九年级下册初中英语全册作业设计一课一练(课时练)
- 2021新版GJB9001C-2017体系文件内审检查表
- 风筛式清选机的使用与维护
- 《计算流体力学CFD》
- 马克思主义宗教观课件
评论
0/150
提交评论