版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省忻州市忻府区忻州一中2023-2024学年高一数学第一学期期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.长方体中,,,E为中点,则异面直线与CE所成角为()A. B.C. D.2.已知y=(x-m)(x-n)+2022(m<n),且α,β(α<β)是方程y=0的两根,则α,β,m,n的大小关系是()A.α<m<n<β B.m<α<n<βC.m<α<β<n D.α<m<β<n3.设全集,集合,则()A. B.C. D.4.已知函数,若正实数、、、互不相等,且,则的取值范围为()A. B.C. D.5.已知向量=(1,2),=(2,x),若⊥,则|2+|=()A. B.4C.5 D.6.下列函数值为的是()A.sin390° B.cos750°C.tan30° D.cos30°7.函数的一个零点在区间内,则实数的取值范围是()A. B.C. D.8.与2022°终边相同的角是()A. B.C.222° D.142°9.直线与圆相交于两点,若,则的取值范围是A. B.C. D.10.已知点,直线与线段相交,则直线的斜率的取值范围是()A.或 B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某校高中三个年级共有学生2000人,其中高一年级有学生750人,高二年级有学生650人.为了了解学生参加整本书阅读活动的情况,现采用分层抽样的方法从中抽取容量为200的样本进行调查,那么在高三年级的学生中应抽取的人数为___________.12.若,则的终边所在的象限为______13.过正方体的顶点作直线,使与棱、、所成的角都相等,这样的直线可以作_________条.14.函数的递增区间是__________________15.在空间直角坐标系中,一点到三个坐标轴的距离都是1,则该点到原点的距离是________.16.函数最大值为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.下列函数有最大值、最小值吗?如果有,请写出取最大值、最小值时自变量x的集合,并求出最大值、最小值.(1),;(2),.18.设函数(1)若是偶函数,求k的值(2)若存在,使得成立,求实数m的取值范围;(3)设函数若在有零点,求实数的取值范围19.设全集U=R,集合,(1)当时,求;(2)若A∩B=A,求实数a的取值范围20.已知函数(1)证明:函数在上是增函数;(2)求在上的值域21.已知函数(1)求的最大值,并写出取得最大值时自变量的集合;(2)把曲线向左平移个单位长度,然后使曲线上各点的横坐标变为原来的倍(纵坐标不变),得到函数的图象,求在上的单调递增区间.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出异面直线与所成角【详解】解:长方体中,,,为中点,以为原点,为轴,为轴,为轴,建立空间直角坐标系,,,,,,,,设异面直线与所成角为,则,,异面直线与所成角为故选:【点睛】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题2、C【解析】根据二次函数的性质判断【详解】记,由题意,,的图象是开口向上的抛物线,所以上递减,在上递增,又,,所以,,即(也可由的图象向下平移2022个单位得的图象得出判断)故选:C3、A【解析】根据补集定义计算.【详解】因为集合,又因为全集,所以,.故选:A.【点睛】本题考查补集运算,属于简单题.4、A【解析】利用分段函数的定义作出函数的图象,不妨设,根据图象可得出,,,的范围同时,还满足,即可得答案【详解】解析:如图所示:正实数、、、互不相等,不妨设∵则,∴,∴且,,∴故选:A5、C【解析】根据求出x的值,再利用向量的运算求出的坐标,最后利用模长公式即可求出答案【详解】因为,所以解得,所以,因此,故选C【点睛】本题主要考查向量的坐标预算以及模长求解,还有就是关于向量垂直的判定与性质6、A【解析】由诱导公式计算出函数值后判断详解】,,,故选:A7、C【解析】根据零点存在定理得出,代入可得选项.【详解】由题可知:函数单调递增,若一个零点在区间内,则需:,即,解得,故选:C.【点睛】本题考查零点存在定理,属于基础题.8、C【解析】终边相同的角,相差360°的整数倍,据此即可求解.【详解】∵2022°=360°×5+222°,∴与2022°终边相同的角是222°.故选:C.9、C【解析】圆,即.直线与圆相交于两点,若,设圆心到直线距离.则,解得.即,解得故选C.点睛:直线与圆的位置关系常用处理方法:(1)直线与圆相切处理时要利用圆心与切点连线垂直,构建直角三角形,进而利用勾股定理可以建立等量关系;(2)直线与圆相交,利用垂径定理也可以构建直角三角形;(3)直线与圆相离时,当过圆心作直线垂线时长度最小10、A【解析】,所以直线过定点,所以,,直线在到之间,所以或,故选A二、填空题:本大题共6小题,每小题5分,共30分。11、60【解析】求出高三年级的学生人数,再根据分层抽样的方法计算即可.【详解】高三年级有学生2000-750-650=600人,用分层抽样的方法从中抽取容量为200的样本,应抽取高三年级学生的人数为200×600故答案为:6012、第一或第三象限【解析】将表达式化简,,二者相等,只需满足与同号即可,从而判断角所在的象限.【详解】由,,若,只需满足,即与同号,因此的终边在第一或第三象限.故答案为:第一或第三象限.13、【解析】将小正方体扩展成4个小正方体,根据直线夹角的定义即可判断出符合条件的条数【详解】解:设ABCD﹣A1B1C1D1边长为1第一条:AC1是满足条件的直线;第二条:延长C1D1到C1且D1C2=1,AC2是满足条件的直线;第三条:延长C1B1到C3且B1C3=1,AC3是满足条件的直线;第四条:延长C1A1到C4且C4A1,AC4是满足条件的直线故答案为4【点睛】本题考查满足条件的直线条数的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,考查分类与整合思想,是基础题14、【解析】由已知有,解得,即函数的定义域为,又是开口向下的二次函数,对称轴,所以的单调递增区间为,又因为函数以2为底的对数型函数,是增函数,所以函数的递增区间为点睛:本题主要考查复合函数的单调区间,属于易错题.在求对数型函数的单调区间时,一定要注意定义域15、【解析】设出点的坐标,根据题意列出方程组,从而求得该点到原点的距离.【详解】设该点的坐标因为点到三个坐标轴的距离都是1所以,,,所以故该点到原点的距离为,故填.【点睛】本题主要考查了空间中点的坐标与应用,空间两点间的距离公式,属于中档题.16、3【解析】分析:利用复合函数的性质求已知函数的最大值.详解:由题得当=1时,函数取最大值2×1+1=3.故答案为3.点睛:本题主要考查正弦型函数的最大值,意在考查学生对该基础知识的掌握水平.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)有最大值、最小值.见解析(2)有最大值、最小值.见解析【解析】(1)函数有最大最小值,使函数,取得最大值最小值的x的集合,就是使函数,取得最大值最小值的x的集合;(2)令,使函数,取得最大值的x的集合,就是使,取得最小值的z的集合,使函数,取得最小值的x的集合,就是使,取得最大值的z的集合.【详解】解:容易知道,这两个函数都有最大值、最小值.(1)使函数,取得最大值的x的集合,就是使函数,取得最大值的x的集合;使函数,取得最小值的x的集合,就是使函数,取得最小值的x的集合.函数,的最大值是;最小值是.(2)令,使函数,取得最大值的x的集合,就是使,取得最小值的z的集合.由,得.所以,使函数,取得最大值3的x的集合是.同理,使函数,取得最小值-3的x的集合是.函数,的最大值是3,最小值是-3.【点睛】本题主要考查三角函数的最值的求法,意在考查学生对这些知识的理解掌握水平.18、(1),(2),(3)【解析】(1)由偶函数的定义可得,,列方程可求出的值;(2)由,可得,分离出,换元后利用二次函数的性质求解即可;(3)结合已知条件,代入可求,然后结合在有零点,利用换元法,结二次函数的性质求解.【详解】解:(1)因为是偶函数,所以,即,,解得;(2)由,可得,则,即存在,使成立,令,则,因为,所以,令,则对称轴为直线,所以在单调递增,所以时,取得最大值,即,所以,即实数m的取值范围为;(3),则,所以,设,当时,函数为增函数,则,若在上有零点,即在上有解,即,,因为函数在为增函数,所以,所以取值范围为.【点睛】关键点点睛:此题考查函数奇偶性的应用,考查二次函数性质的应用,解题的关键是将转化为,然后利用换元法结合二次函数的性质求解即可,考查数学转化思想,属于中档题19、(1)或(2)【解析】(1)化简集合B,根据补集、并集的运算求解;(2)由条件转化为A⊆B,分类讨论,建立不等式或不等式组求解即可.【小问1详解】当时,,,或,或【小问2详解】由A∩B=A,得A⊆B,当A=∅时,则3a>a+2,解得a>1,当A≠∅时,则,解得,综上,实数a的取值范围是20、(1)证明见解析(2)【解析】(1)设,化简计算并判断正负即可得出;(2)根据单调性即可求解.【小问1详解】设,,因为,所以,,则,即,所以函数在上是增函数;【小问2详解】由(1)可知,在单调递增,所以,所以在的值域为.21、(1)的最大值,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年钢材生产许可证合同规范文本3篇
- 2025年粤教版必修1生物上册阶段测试试卷含答案
- 二零二五年度航空航天材料样本试验合同3篇
- 二零二五版四合院房产出售与生态旅游开发合同3篇
- 2024版外墙保温劳务合同
- 2025年粤教版七年级化学上册阶段测试试卷含答案
- 2025年度网络营销推广技术服务合同4篇
- 独特2024年度版权许可使用合同
- 2025年上教版必修1物理上册月考试卷含答案
- 校园软件施工方案
- 矩形砖砌渠道施工方案
- 大数据与人工智能ppt
- 中医科特色诊疗规范
- 建筑工程一切险条款版
- PEP小学六年级英语上册选词填空专题训练
- 古建筑修缮项目施工规程(试行)
- GA 844-2018防砸透明材料
- 化学元素周期表记忆与读音 元素周期表口诀顺口溜
- 非人力资源经理的人力资源管理培训(新版)课件
- 钼氧化物还原过程中的物相转变规律及其动力学机理研究
- (完整word)2019注册消防工程师继续教育三科试习题及答案
评论
0/150
提交评论