版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西汉中市汉台区县2023-2024学年数学高一上期末联考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12小题,共60分)1.已知在上的减函数,则实数的取值范围是()A. B.C. D.2.已知集合,则=A. B.C. D.3.定义在上的奇函数,当时,,则不等式的解集为()A. B.C. D.4.将函数y=sin(2x+)的图象向右平移个单位长度后,得到的图象对应的函数解析式为()A. B.C. D.5.设,,,则,,的大小关系()A. B.C. D.6.定义域在R上的函数是奇函数且,当时,,则的值为()A. B.C D.7.已知命题:“,方程有解”是真命题,则实数a的取值范围是()A. B.C. D.8.已知函数在R上是单调函数,则的解析式可能为()A. B.C. D.9.已知直线和互相平行,则实数的取值为()A.或3 B.C. D.1或10.在中,满足,则这个三角形是()A.正三角形 B.等腰三角形C.锐角三角形 D.钝角三角形11.在正方体中,为棱的中点,则A. B.C. D.12.已知函数,方程在有两个解,记,则下列说法正确的是()A.函数的值域是B.若,的增区间为和C.若,则D.函数的最大值为二、填空题(本大题共4小题,共20分)13.已知函数,给出下列四个命题:①函数是周期函数;②函数的图象关于点成中心对称;③函数的图象关于直线成轴对称;④函数在区间上单调递增.其中,所有正确命题的序号是___________.14.__________15._____.16.一个扇形周长为8,则扇形面积最大时,圆心角的弧度数是__________.三、解答题(本大题共6小题,共70分)17.已知函数在闭区间()上的最小值为(1)求的函数表达式;(2)画出的简图,并写出的最小值18.将函数(且)的图象向左平移1个单位,再向上平移2个单位,得到函数的图象,(1)求函数的解析式;(2)设函数,若对一切恒成立,求实数的取值范围;(3)若函数在区间上有且仅有一个零点,求实数的取值范围.19.对于两个函数:和,的最大值为M,若存在最小的正整数k,使得恒成立,则称是的“k阶上界函数”.(1)若,是的“k阶上界函数”.求k的值;(2)已知,设,,.(i)求的最小值和最大值;(ii)求证:是的“2阶上界函数”.20.已知全集,若集合,.(1)若,求;(2)若,求实数的取值范围.21.在三棱柱ABC-A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是AC,B1C的中点(1)求证:EF∥平面AB1C1;(2)求证:平面AB1C⊥平面ABB122.已知函数,且.(1)求实数a的值;(2)判断函数在上的单调性,并证明.
参考答案一、选择题(本大题共12小题,共60分)1、B【解析】令,,()若,则函数,减函数,由题设知为增函数,需,故此时无解()若,则函数是增函数,则为减函数,需且,可解得综上可得实数的取值范围是故选点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值;(3)复合函数的单调性,不仅要注意内外函数单调性对应关系,而且要注意内外函数对应自变量取值范围.2、B【解析】分析:化简集合,根据补集的定义可得结果.详解:由已知,,故选B.点睛:本题主要一元二次不等式的解法以及集合的补集运算,意在考查运算求解能力.3、D【解析】当时,为单调增函数,且,则的解集为,再结合为奇函数,可得答案【详解】当时,,所以在上单调递增,因为,所以当时,等价于,即,因为是定义在上的奇函数,所以时,在上单调递增,且,所以等价于,即,所以不等式的解集为故选:D4、B【解析】直接利用函数图像变化原则:“左加右减,上加下减”得到平移后的函数解析式【详解】函数图像向右平移个单位,由得,故选B【点睛】本题考查函数图像变换:“左加右减,上加下减”,需注意“左加右减”时平移量作用在x上,即将变成,是函数图像平移了个单位,而非个单位5、A【解析】根据指数函数和对数函数的单调性比大小.【详解】由已知得,,且,,所以.故选:A.6、A【解析】根据函数的奇偶性和周期性进行求解即可.【详解】因为,所以函数的周期为,因为函数是奇函数,当时,,所以,故选:A7、B【解析】由根的判别式列出不等关系,求出实数a的取值范围.【详解】“,方程有解”是真命题,故,解得:,故选:B8、C【解析】根据条件可知当时,为增函数,在在为增函数,且,结合各选项进行分析判断即可【详解】当时,为增函数,则在上为增函数,且,A.在上为增函数,,故不符合条件;B.为减函数,故不符合条件;C.在上为增函数,,故符合条件;D.为减函数,故不符合条件.故选:C.9、B【解析】利用两直线平行等价条件求得实数m的值.【详解】∵两条直线x+my+6=0和(m﹣2)x+3y+2m=0互相平行,∴解得m=﹣1,故选B【点睛】已知两直线的一般方程判定两直线平行或垂直时,记住以下结论,可避免讨论:已知,,则,10、C【解析】由可知与符号相同,且均为正,则,即,即可判断选项【详解】由题,因为,所以与符号相同,由于在中,与不可能均为负,所以,,又因为,所以,即,所以,所以三角形是锐角三角形故选:C【点睛】本题考查判断三角形的形状,考查三角函数值的符号11、C【解析】画出图形,结合图形根据空间中的垂直的判定对给出的四个选项分别进行分析、判断后可得正确的结论【详解】画出正方体,如图所示对于选项A,连,若,又,所以平面,所以可得,显然不成立,所以A不正确对于选项B,连,若,又,所以平面,故得,显然不成立,所以B不正确对于选项C,连,则.连,则得,所以平面,从而得,所以.所以C正确对于选项D,连,若,又,所以平面,故得,显然不成立,所以D不正确故选C【名师点睛】本题考查线线垂直的判定,解题的关键是画出图形,然后结合图形并利用排除法求解,考查数形结合和判断能力,属于基础题12、B【解析】利用函数的单调性判断AB选项;解方程求出从而判断C选项;举反例判断D选项.【详解】对于A选项,当时,,,为偶函数,当时,,任取,且,,若,则;若,则,即函数在区间上单调递减,在区间上单调递增,图像如图示:结合偶函数的性质可知,的值域是,故A选项错误;对于B选项,,当时,,,则为偶函数,当时,,易知函数在区间上单调递减,当时,,易知函数在区间上单调递增,图像如图示:根据偶函数的性质可知,函数的增区间为和,故B选项正确;对于C选项,若,图像如图示:若,则,与方程在有两个解矛盾,故C选项错误;对于D选项,若时,,图像如图所示:当时,则与方程在有两个解矛盾,进而函数的最大值为4错误,故D选项错误;故选:B二、填空题(本大题共4小题,共20分)13、①②③【解析】利用诱导公式化简函数,借助周期函数的定义判断①;利用函数图象对称的意义判断②③;取特值判断④作答.【详解】依题意,,因,是周期函数,是它的一个周期,①正确;因,,即,因此的图象关于点成对称中心,②正确;因,,即,因此的图象关于直线成轴对称,③正确;因,,,显然有,而,因此函数在区间上不单调递增,④不正确,所以,所有正确命题的序号是①②③.故答案为:①②③【点睛】结论点睛:函数的定义域为D,,(1)存在常数a,b使得,则函数图象关于点对称.(2)存在常数a使得,则函数图象关于直线对称.14、2【解析】考点:对数与指数的运算性质15、【解析】利用诱导公式变形,再由两角和的余弦求解【详解】解:,故答案为【点睛】本题考查诱导公式的应用,考查两角和的余弦,是基础题16、2【解析】设扇形的半径为,则弧长为,结合面积公式计算面积取得最大值时的取值,再用圆心角公式即可得弧度数【详解】设扇形的半径为,则弧长为,,所以当时取得最大值为4,此时,圆心角为(弧度)故答案为:2三、解答题(本大题共6小题,共70分)17、(1)(2)见解析【解析】【试题分析】(1)由于函数的对称轴为且开口向上,所以按三类,讨论函数的最小值.(2)由(1)将分段函数的图象画出,由图象可判断出函数的最小值.【试题解析】(1)依题意知,函数是开口向上的抛物线,∴函数有最小值,且当时,下面分情况讨论函数在闭区间()上的取值情况:①当闭区间,即时,在处取到最小值,此时;②当,即时,在处取到最小值,此时;③当闭区间,即时,在处取到最小值,此时综上,的函数表达式为(2)由(1)可知,为分段函数,作出其图象如图:由图像可知【点睛】本题主要考查二次函数在动区间上的最值问题,考查分类讨论的数学思想,考查数形结合的数学思想方法.由于二次函数的解析式是知道的,即开口方向和对称轴都知道,而题目给定定义域是含有参数的动区间,故需要对区间和对称轴对比进行分类讨论函数的最值.18、(1)(2)(3)【解析】(1)由图象的平移特点可得所求函数的解析式;(2)求得的解析式,可得对一切恒成立,再由二次函数的性质可得所求范围;(3)将化简为,由题意可得只需在区间,,上有唯一解,利用图象,数形结合求得答案.【小问1详解】将函数且的图象向左平移1个单位,得到的图象,再向上平移2个单位,得到函数的图象,即:;【小问2详解】函数,,若对一切恒成立,则对一切恒成立,由在递增,可得,所以,即的取值范围是,;【小问3详解】关于的方程且,故函数在区间上有且仅有一个零点,等价于在区间上有唯一解,作出函数且的图象,如图示:当时,方程的解有且只有1个,故实数p的取值范围是.19、(1);(2)(i)时,,;时,,;时,,;(ii)证明部分见解析.【解析】(1)先求,的范围,再求的最大值,利用恒成立问题的方式处理;(2)分类讨论对称轴是否落在上即可;先求的最大值,需观察发现最值在取得,不要尝试用三倍角公式,另外的最大值必定在端点或者在顶点处取得,通过讨论的范围,证明即可【小问1详解】时,单调递增,于是,于是,则最大值为,又恒成立,故,注意到是正整数,于是符合要求的为.【小问2详解】(i)依题意得,为开口向上,对称轴为的二次函数,于是在上递减,在上递增,由于,,下分类讨论:当,即时,,;当,即时,,;当,即当,在上递减,,.(ii),则,当,即取等号,,,则,下令,只需说明时,即可,分类如下:当时,,且注意到,此时,显然时,单调递减,于是;当,由基本不等式,,且,,即,此时,而,时,由基本不等式,,故有:综上,时,,即当时,最小正整数【点睛】本题综合的考查了分类讨论思想,函数值域的求法等问题,特别是观察分析出的最大值,若用三倍角公式反倒会变得更加复杂.20、(1)(2)【解析】(1)利用集合的交集及补集的定义直接求解即可;(2)由可得,利用集合的包含关系求解即可.【详解】(1)当时,,所以,因为,所以;(2)由得,,所以【点睛】本题主要考查了集合的运算及包含关系求参,属于基础题.21、(1)证明详见解析;(2)证明详见解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论