




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Powertrain&Calibration101JohnBucknellDaimlerChryslerPowertrainSystemsEngineeringDecember4,2006Powertrain&CalibrationTopicsBackgroundPowertraintermsThermodynamicsMechanicalDesignCombustionArchitectureCylinderFilling&EmptyingAerodynamicsCalibrationSpark&FuelTransients&DrivabilityWhatisaPowertrain?EnginethatconvertsthermalenergytomechanicalworkParticularly,thearchitecturecomprisingallthesubsystemsrequiredtoconvertthisenergytoworkSometimesextendstodrivetrain,whichconnectspowertraintoend-userofpowerCharacteristicsofInternalCombustionHeatEnginesHighenergydensityoffuelleadstohighpowertoweightratio,especiallywhencombustingwithatmosphericoxygenExternalcombustionhaslossesduetomultipleinefficiencies(primarilyheatlossfromcondensingofworkingfluid),internalcombustionhaslessinefficienciesHeatenginesuseworkingfluidswhichisthesimplestofallenergyconversionmethodsReciprocatingInternalCombustionHeatEnginesCharacteristicsSlider-crankmechanismhashighmechanicalefficiency(pistonskirtrubbingissourceof50-60%ofallfiringfriction)Piston-cylindermechanismhashighsingle-stagecompressionratiocapability–leadstohighthermalefficiencycapabilityFairtopoorairpump,limitingpowerpotentialwithoutadditionalmechanismsReciprocatingEngineTermsVc=ClearanceVolumeVd=DisplacementorSweptVolumeVt=TotalVolumeTCorTDC= ToporTopDeadCenterPositionBCorBDC= BottomorBottomDeadCenterPositionCompressionRatio(CR)FurtherexplanationofaspectsofCompressionRatioReciprocatingEnginesMostlayoutscreatedduringsecondWorldWarasaircraftmanufacturersstruggledtomaketheleast-compromisedinstallationThermodynamicsOttoCycleDieselCycleThrottledCycleSuperchargedCycleSource:InternalComb.EngineFund.ThermodynamicTermsMEP
–MeanEffectivePressureAveragecylinderpressureovermeasuringperiodTorqueNormalizedtoEngineDisplacement(VD)BMEP–BrakeMeanEffectivePressure
IMEP–IndicatedMeanEffectivePressure MEPofCompressionandExpansionStrokesPMEP–PumpingMeanEffectivePressure MEPofExhaustandIntakeStrokesFFMEP–FiringFrictionMeanEffectivePressure
BMEP=IMEP–PMEP–FFMEPThermodynamicTermscontinuedWork=Power=Work/UnitTimeSpecificPower
–Powerperunit,typicallydisplacementorweightPressure/VolumeDiagram
–EngineeringtooltographcylinderpressureIndicatedWorkTDCBDCSource:DesignandSimofFourStrokesTDCBDCSource:DesignandSimofFourStrokesPumpingWorkHistoryofInternalCombustion1878NiklausOttobuiltfirstsuccessfulfourstrokeengine1885GottliebDaimlerbuiltfirsthigh-speedfourstrokeengine1878sawSirDougaldClerkcompletefirsttwo-strokeengine(simplifiedbyJosephDayin1891)1891Panhard-LevassorvehiclewithfrontenginebuiltunderDaimlerlicenseEnergyDistributioninPassengerCarEnginesSource:SAE2000-01-2902(Ricardo)Source:AdvancedEngineTechnologyUsingExhaustEnergyHighestexpansionratiorecoversmostthermalenergyTurbinescanrecoverheatenergyleftoverfromgasexchangeEnergycanbeusedtodriveturbo-compressororfedbackintocranktrainSource:InternalComb.EngineFund.SuperchargingIncreasesspecificoutputbyincreasingchargedensityintoreciprocatorManymethodsofimplementation,costusuallyonlylimitingfactorMechanicalDesignTwoValveValvetrainPushrodOHV(Type5)HEMI2-Valve(Type5)SOHC2-Valve(Type2)FourValveValvetrainSOHC4-Valve(Type3)DOHC4-Valve(Type2)DOHC4-Valve(Type1)DesmodromicSpecificPower= f(AirFlow,ThermalEfficiency)Airflowisaneasiervariabletochangethanthermalefficiency90%ofrestrictionofinductionsystemoccursincylinderheadCylinderheadlayoutsthatallowthegreatestairflowwillhavehighestspecificpowerpotentialPeakflowfrompoppetvalveenginesprimarilyafunctionoftotalvalveareaMore/largervalvesequalsgreatervalveareaValvetrainCombustionTermsBrakePower–Powermeasuredbytheabsorber(brake)atthecrankshaftBSFC-BrakeSpecificFuelConsumption FuelMassFlowRate/BrakePower grams/kW-horlbs/hp-hLBTFuelling-LeanBestTorque LeanestFuel/AirtoAchieveBestTorque LBT=0.0780-0.0800FAor0.85-0.9LambdaThermalEnrichment–FueladdedforcoolingduetocomponenttemperaturelimitInjectorPulseWidth-TimeInjectorisOpenCombustionTermscontinuedSparkAdvance–TimingincrankdegreespriortoTDCforstartofcombustionevent(ignition)
MBTSpark–MaximumBrakeTorqueSpark MinimumSparkAdvancetoAchieveBestTorqueBurnRate–SpeedofCombustion Expressedasafractionoftotalheatreleasedversuscrankdegrees
MAP-ManifoldAbsolutePressure AbsolutenotGauge(doesnotreferencebarometer)CombustionTermscontinuedKnock
–Autoignitionofend-gassesincombustionchamber,causingextremeratesofpressurerise.KnockLimitSpark-MaximumSparkAllowedduetoKnock–canbehigherorlowerthanMBTPre-Ignition–Autoignitionofmixturepriortosparktiming,typicallyduetohightemperaturesofcomponentsCombustionStability–Cycletocyclevariationinburnrate,trappedmass,locationofpeakpressure,etc.Thelowerthevariationthebetterthestability.EngineArchitecture
InfluenceonPerformanceIntake&ExhaustManifoldTuningCylinderFilling&EmptyingMomentumPressureWaveAerodynamicsFlowSeparationWallFrictionJunctions&BendsInductionRestrictionExhaustRestriction(Backpressure)CompressionRatioValveEventsIntakeTuning
forWOTPerformanceIntakemanifoldshaveducts(“runners〞)thattuneatfrequenciescorrespondingtoenginespeed,likeanorganpipeLongerrunnerstuneatlowerfrequenciesShorterrunnerstuneathigherfrequenciesTuningincreaseslocalpressureatintakevalvetherebyincreasingflowrateDuctdiameterisatrade-offbetweenvelocityandwallfrictionofpassingchargeExhaustTuning
forWOTPerformanceExhaustmanifoldstunejustasintakemanifoldsdo,butsincenofreshchargeisbeingintroducedasaresult–notasmuchimpactonvolumetricefficiency(~8%maximumforheaders)CatalystperformanceusuallylimitsproductionexhaustsystemsthatflowacceptablywithlittletonotuningTunedHeadersTunedHeadersgenerallydonotappearonproductionenginesduetotheimpairmenttocatalystlight-offperformance(usuallyaminimumof150%additionaldistanceforcold-startexhaustheattobelost).Performancecanbeenhancedby3-8%across60%oftheoperatingrange.MomentumEffectsPressurelossinfluencesdictatethatductdiameterbeaslargeaspossibleforminimumfrictionIncreasingchargemomentumenhancescylinderfillingbyextendinginductionprocesspastunsteadydirectenergytransferofinductionstroke(iepistonmotion)DecreasingductdiameterincreasesavailablekineticenergyforagivenmassfluxThereforeductdiameterisatrade-offbetweenvelocityandwallfrictionofpassingchargePressureWaveEffectsInductionprocessandexhaustblowdownbothcausepressurepulsationsAbruptchangesofincreasedcross-sectioninthepathofapressurewavewillreflectawaveofoppositemagnitudebackdownthepathofthewaveClosed-endedductsreflectpressurewavesdirectly,thereforeawavewillechowithsameamplitudePressureWaveEffectscon’tFrictiondecreasesenergyofpressurewaves,thereforethe1storderreflectionisthestrongest–butupto5thorderhavebeenutilizedtogoodeffectinhighspeedengines(thusactiverunnersinF1inY2K)Plenumsalsoresonateandthroughsuperpositionincreasetheamplitudeofpressurewavesinrunners–smallimpactrelativetorunnergeometryEffectsofIntakeRunnerGeometryTuninginProductionI4EngineAerodynamicsLossesduetopooraerodynamicscanbeequalinmagnitudetothegainsfrompressurewavetuningOftenthedominantfactoryinpoorlyperformingOEcomponentsIfproperlydesigned,flowofasingle-entryintakemanifoldcanapproach98%ofanidealentranceonacylinderheadport(steadystateonaflowbench)Aerodynamicscon’tFlowSeparationLiterallysamephenomenonasstallinwingelements–pressureinfreestreaminsufficientto‘push’flowalongwallofshortsideradiusRecirculationpushesflowawayfromwall,therebyreducingeffectivecross-section:so-called“venacontracta〞Simpleguidelinescanpreventflowseparationinducts–studiesperformedbyNACAinthe1930sempiricallyestablishedthebestductconfigurationsAerodynamicscon’tWallFrictionSurfacefinishofductsneedtobeassmoothaspossibletoprevent‘tripping’offlowonamacrolevelJunctions&BendsEverythingfromyourfluiddynamicstextbookappliesRadiusedinletsandfree-standingpipeoutletsMinimizenumberofbendsAvoid‘S’bendsifatallpossibleInductionRestrictionAircleanerandintakemanifoldsprovidesomeresistancetoincomingchargePowerlossrelatedtorestrictionalmostdirectlyafunctionofratiobetweenmanifoldpressure(plenumpressureupstreamofrunners)andatmosphericExhaustRestrictionCompressionRatioThehighestpossiblecompressionratioisalwaysthedesignpoint,ashigherwillalwaysbemorethermallyefficientwithbetteridlequalityKnocklimitscompressionratiobecauseofcombustionstabilityissuesatlowenginespeedduetonecessarysparkretardMostenginesaredesignedwithhighercompressionthanisbestforlowspeedcombustionstabilitybecauseoftheassociatedpart-loadBSFCbenefitsandhighspeedpowerValveEventsValveeventsdefinehowanenginebreathesallthetime,andsoareanimportantaspectoflowloadaswellashighloadperformanceValveeventsalsoeffectivelydefinecompression&expansionratio,as“compression〞willnotbeginuntilthepiston-cylindermechanismissealed–samewithexpansionValveEventTimingDiagramSpiderPlot-DescribestimingpointsforvalveeventswithrespecttoCrankPositionCamCenterline-PeakValveLiftwithrespecttoTDCinCrankDegreesValveEventsforPowerMaximizeTrappingEfficiencyIntakeclosingthatisbestcompromisebetweencompressionstrokebackflowandinductionmomentum(retardwithincreasingenginespeed)EarlyintakeclosingusefulnesslimitedatlowenginespeedduetoknocklimitEarlyintakeopeningwillimpartsomeexhaustblowdownorpressurewavetuningmomentumtointakechargeMaximizeThermalEfficiencyEarliestintakeclosingtomaximizecompressionratioforbestburnrate(optimumisinstantaneousafterTDC)LatestexhaustopeningtomaximizeexpansionratioforbestuseofheatenergyandlowestEGT(leastthermalprotectionenrichmentbeyondLBT)ValveEventsforPowerMinimizeFlowLossAchievemaximumvalvelift(maxflowusuallyatL/D>0.25-0.3)aslongaspossible(squareliftcurvesareoptimumforpoppetvalves)MinimizeExhaustPumpingWorkEarliestexhaustopeningthatblowsdowncylinderpressuretobackpressurelevelsbeforeexhauststroke(advancewithincreasingenginespeed)Earliestexhaustclosingthatavoidsrecompressionspike(retardwithincreasingenginespeed)EnginePowerandBSFCvsEngineSpeedSummaryComponent’sRelativeImpactonPerformanceCylinderHeadPorts&ValveAreaValveEventsIntakeManifoldRunnerGeometryCompressionRatioExhaustHeaderGeometryExhaustRestrictionAirCleanerRestrictionPowertrainClosingRemarksPowertrainiscompromiseFour-strokeenginesarevolumetricflowratedevices–theonlyroutetomorepowerisincreasedenginespeed,morevalveareaorincreasedchargedensityMorespeed,chargedensityorvalveareaareexpensiveordifficulttodevelop–thereforeminimizinglossesisthemostefficientpathwithinexistingenginearchitecturesHighestaveragepowerduringavehicleaccelerationisfastest–peakpowervaluesdon’twinracesBreakCalibrationWhatisit?Optimizingthecontrolsystem(oncehardwareisfinalized)fordrivability,durability&emissionsIt’sjustsparkandfuel–howhardcoulditbe?KnowledgeofThermodynamics,CombustionandControlTheoryallplayinFortunatelyraceengineshavenoemissionsconstraintsanduseracefuel(usuallyeliminatesanyknock)–thereforearerelativelyeasytocalibrateCalibrationTermsStoichiometry
–ChemicallycorrectratiooffueltoairforcombustionF/A–Fuel/AirRatio Massratioofmixture,adeterminationofrichnessorleanness. Stoichiometry=0.0688-0.0696FALambda–ExcessAirRatio Stoichiometry=1.0LambdaRichF/A–F/AgreaterthanStoichiometry Rich<1.0LambdaLeanF/A–F/AlessthanStoichiometry Lean>1.0LambdaCalibrationTermscontinuedBrakePower–Powermeasuredbytheabsorber(brake)atthecrankshaftBSFC-BrakeSpecificFuelConsumption FuelMassFlowRate/BrakePower grams/kW-horlbs/hp-hLBTFuelling–LeanBestTorque LeanestFuel/AirtoAchieveBestTorque LBT=0.0780-0.0800FAor0.85-0.9LambdaThermalEnrichment–FueladdedforcoolingduetoexhaustcomponenttemperaturelimitInjectorPulseWidth-TimeInjectorisOpenCalibrationTermscontinuedSparkAdvance–TimingincrankdegreespriortoTDCforstartofcombustionevent(ignition)
MBTSpark-MaximumBrakeTorque MinimumSparkAdvancetoAchieveBestTorqueBurnRate–SpeedofCombustion Expressedasafractionoftotalheatreleasedversuscrankdegrees
MAP-ManifoldAbsolutePressure AbsolutenotGauge(whichreferencesbarometer)ControlSystemTypesAlpha-NEngineSpeed&ThrottleAngleSpeed-DensityEngineSpeedandMAP/ACTMAFEngineSpeedandMAFAlpha-NFuelandsparkmapsarebasedonthrottleangle–whichisverynon-linearandrequirescompletemappingofengineGoodthrottleresponseoncedialedinDensitycompensation(altitudeandtemperature)isusuallyabsent–needstoberecalibratedeverytimecargoesoutSpeed-DensityFuelandsparkmapsarebasedonMAP–densityofchargeisastrongfunctionofpressure,correctedbyairtempandcoolanttempthereforeairflowissimpletocalculateLesstime-intensivethanAlpha-N,oncecalibratedisgood–mostcommontypeofcontrolNeedslessmapping–candoWOTlineandmid-mapthencurve-fitairflow(sparkneedsalittlemorein-depthforoptimalcontrol)MAFFuelandsparkmapsarebasedonMAF–airflowmeasureddirectlyMAFsensorisn’tthemostrobustdevicePressurepulsesconfusesignal,eachapplicationhastobemappedwithsecondarydampedMAFsensor(usuallya55gallondruminline)Leastnoisysignalisusuallyataircleaner–soseparatetransportdelaycontrolsneedtobecalibratedfortransientsandleaksneedtobeabsolutelyeliminatedBoostedapplicationsusuallyaddaMAPaswellControlSystemComponentsFuelSystemInjectors,Fuelpump&RegulatorBasicSensorsManifoldAbsolutePressure(MAP)orMassAirFlow(MAF)CrankPosition(Rpm&TDC)CamPosition(Sync)AirChargeTemp(ACT)EngineCoolantTemp(ECT)KnockSensorLamdaSensorFuelSystemInjectorsVolumetricflowratesolenoids,linearrelationshipbetweenpulsewidthandflowforgivenpressuredeltaBatteryoffsetistimenecessarytoopenandclosesolenoid–timeisfixedforanyvoltageDutycycleisinjectorontime–it’llgostaticabove95%Bernoullirelationshipfordifferentpressuredeltas–allowingdifferingflowratesforagiveninjectorHighimpedanceinjectorshavelowerdynamicrangeandloweramperageandthuslessheatincontrollerFuelPump&RegulatorPressureneedstobesufficientlyhightopreventvapourlock(>4bar)andlowenoughthatenginecanidleIn-tankregulationaddsleastheatbuthasline-lossasflowrateincreases,iefuelpressurechangeswithflowManifold-referencedregulationcanhelpinjectorsachievehigherflowratesatelevatedboostorlowerflowsatlowvacuum–makingcalibrationmorecomplicatedBernoulliEffectofFuelPressureSensorsManifoldAbsolutePressure(MAP)Avariable-resistancediaphragmwithperfectvacuumononesideandmanifoldpressureonotherMassAirFlow(MAF)Aheatingelementfollowedbyatemperature-sensitiveelement.HeatedelementismaintainedataconstanttemperatureandbaseduponthemeasureddownstreamtemperaturethemassflowratecanbedeterminedCrankPositionHighresolutionforsparkadvance,less-soforcrankspeedandwithonce-per-revcanindicateTDCCamPositionLowresolutionforsyncronizationforsequentialfuelinjectionandindividualcylindersparkAirChargeTempandEngineCoolantTempThermistorsusedforairdensitycorrectionandstartupenrichmentSensors,contKnockSensorApiezoelectricloadcellthatmeasuresstructuralvibration.Knockisapressurewavethattravelsatlocalsonicvelocityand‘rings’atafrequencythatisafunctionofborediameter(typicallybetween14-18kHz).Whenthestructureoftheengine(typicallytheblock)ishitwiththispressurewaveitringsaswell,butatafrequencythatisafunctionofthestructure(iematerialsandgeometry).AFFTanalysisofdifferentmountingpositions(nodesnotanti-nodes)isnecessarytodeterminethe‘centerfrequency’tolistenforknock(whichismeasuredviain-cylinderpressuremeasurements)withoutpickingupotherstructure-bornenoise.Sensors,contLamdaSensor(EGO)Comparesambientairtoexhaustoxygencontent(partialpressureofoxygen).Sensoroutputisessentiallybinary(onlyindicatesrichorleanofstoichiometry).Wide-bandLamdaSensor(UEGO)Comparespartialpressureofoxygen(lean)andpartialpressureofHmCn,H2&CO(rich)withambient.Givesoutputfrom~0.6to2Lamda.UEGOSchematicEGOSchematicCalibrationGoalsCombustion&ThermodynamicsWork,Power&MeanEffectivePressuresKnock,Pre-IgnitionBurnRateTransientsWallfilmThermalEnrichmentDrivabilityKnockCausesofKnockKnock=f(Time,Temperature,Pressure,Octane)Time–Higherenginespeedsorfasterburnratesreduceknocktendency.Burnratecancomefrommultiplesparksources,morecompactcombustionchambersorincreasedturbulenceTemperature–Reducedcombustiontemperaturesreduceknockthroughreducedchargetemperatures(coolerincomingchargeorreducedresidualburnedgases),increasedevaporativecoolingfromricherF/AmixturesandincreasedcombustionchambercoolingPressure–LowercylinderpressuresreduceknocktendencythroughlowercompressionratioorMAPpressureOctane–Differentfueltypeshavehigherorlowerautoignitiontendencies.OctanevalueisdirectlyrelatedtoknockingtendencyKnockcontinuedEffectsofKnockDisruptsstagnantgasesthatformboundarylayeratedgeofcombustionchamber,increasingheattransfertocomponentsandraisingmeancombustionchambertempthatcanleadtopre-ignitionScoursoilfilmoffcylinderwall,leadingtodryfrictionandincreasedwearofpistonringsShockwavecaninducevibratoryloadsintopistonpin,pistonpinboreandtopland-reducingoilfilmthicknessandacceleratingwearShockwavecanbestrongenoughtostresscomponentstofailureIn-cylinderPressureMeasurementPiezoelectricpressuretransducersdevelopchargewithchangesinpressureInstalledincombustionchamberwallorsparkplugtomeasurefull-cyclepressuresTypicalpressureprobeinstallationPassagedrilledthroughdeckface(avoidingcoolantjacket)CylinderPressureTrace
NoKnockCylinderPressureTrace
KnockLimitorTraceKnock-BestPowerCylinderPressureTrace
SevereDamagingKnockPre-IgnitionEffectsofPre-IgnitionIncreasespeakcylinderpressurebybeginningheatreleasetoosoonIncreasedcylinderpressurealsoincreasesheatloadtocombustionchambercomponents,sustainingthepre-ignition(leadingto‘run-awaypre-ignition’)IncreasesloadsonpistoncrownandpistonpinSustainedpre-ignitionwilltypicallyputaholeinthecenterofthepistoncrownBurnRateBurnRate=f(Spark,DilutionRate/FARatio,ChamberVolumeDistribution,EngineSpeed/MixtureMotion/TurbulentIntensity)SparkClosertoMBTthefastertheburnwithtraceknockthefastestDilutionRate/FARatioLeastdilution(exhaustresidualoranythingunburnable)fastestFARatiobestratearoundLBTChamberVolumeDistributionSmallestchamberwithshortestflamepathbest(multipleignitionsourcesshortenflamepath)EngineSpeed/MixtureMotion/TurbulentIntensityCrankangletimeforcompleteburnnearlyconstantwithincreasingenginespeedindicatingotherfactorsspeedingburnrateMixturemotion-contributedangularmomentumconservedascylindervolumedecreasesduringcompressionstroke,eventuallybreakingdownintovorticesaroundTDCincreasingkineticenergyinchargeTurbulentIntensityameasureoftotalkineticenergyavailabletomoveflamefrontfasterthanlaminarflamespeed.MoreTurbulentIntensityequalsfasterburn.Combustion&ThermodynamicsSummaryPeakSpecificPowerLBTfuellingforbestcompromisebetweenavailableoxygenandchargedensityMBTsparkifpossible,fastburnrateassumedatpeakloadHighestenginespeedtoallowhighestcompressionratioHighestoctanePeakThermalEfficiencyatdesiredloadHighestcompressionratiowillhavebestcombustion,usuallywithhighestexpansionratioforbestuseofthermalenergyMBTsparkwithfastestburnrate10%leanofstoichiometrywillprovidebestcompromisebetweenheatlossesandpumpingwork,butnotusedbecauseofcatalystperformanceimpactsinpasscarsTransientFuellingLiquidfueldoesnotburn,onlyfuelvapourHeatfromsomewheremustbeusedtomakevapour–whichiswhyupto500%morefuelmustbeusedonacoldstarttoprovidesufficien
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 名模大赛领导发言稿模板
- 竞选银行支行团委书记的演讲稿
- 2024年语文第二课堂活动计划3篇
- Java程序中密码相关API误用检测及修正的研究及实现
- 面向波浪-浮体相互作用的势粘流耦合方法研究
- SFTPB在慢阻肺动物模型中的作用
- 中学英语教研组工作总结3篇
- 中国高中生英语心理词汇组织模式实证研究
- 基于半监督宽度学习系统的空气质量预测研究
- 一般生产经营单位安全培训试题含答案(能力提升)
- 计算机技术与软件安全审计试题及答案
- (新课标)专题08+易考必考典型选择题专项复习- 三年级语文下册期末备考(统编版)
- 2024年中央戏剧学院招聘笔试真题
- 药学知识联合用药
- 铁代谢障碍性贫血的相关检验课件
- DBJ50T-187-2014 重庆市住宅用水一户一表设计、施工及验收技术规范
- 2024年晋中职业技术学院高职单招职业技能测验历年参考题库(频考版)含答案解析
- 湖北省武汉市2024-2025学年度高三元月调考英语试题(含答案无听力音频有听力原文)
- 成语故事《熟能生巧》课件2
- DB33T 2320-2021 工业集聚区社区化管理和服务规范
- (2025)新《公司法》知识竞赛题库(附含参考答案)
评论
0/150
提交评论