




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Powertrain&Calibration101JohnBucknellDaimlerChryslerPowertrainSystemsEngineeringDecember4,2006Powertrain&CalibrationTopicsBackgroundPowertraintermsThermodynamicsMechanicalDesignCombustionArchitectureCylinderFilling&EmptyingAerodynamicsCalibrationSpark&FuelTransients&DrivabilityWhatisaPowertrain?EnginethatconvertsthermalenergytomechanicalworkParticularly,thearchitecturecomprisingallthesubsystemsrequiredtoconvertthisenergytoworkSometimesextendstodrivetrain,whichconnectspowertraintoend-userofpowerCharacteristicsofInternalCombustionHeatEnginesHighenergydensityoffuelleadstohighpowertoweightratio,especiallywhencombustingwithatmosphericoxygenExternalcombustionhaslossesduetomultipleinefficiencies(primarilyheatlossfromcondensingofworkingfluid),internalcombustionhaslessinefficienciesHeatenginesuseworkingfluidswhichisthesimplestofallenergyconversionmethodsReciprocatingInternalCombustionHeatEnginesCharacteristicsSlider-crankmechanismhashighmechanicalefficiency(pistonskirtrubbingissourceof50-60%ofallfiringfriction)Piston-cylindermechanismhashighsingle-stagecompressionratiocapability–leadstohighthermalefficiencycapabilityFairtopoorairpump,limitingpowerpotentialwithoutadditionalmechanismsReciprocatingEngineTermsVc=ClearanceVolumeVd=DisplacementorSweptVolumeVt=TotalVolumeTCorTDC= ToporTopDeadCenterPositionBCorBDC= BottomorBottomDeadCenterPositionCompressionRatio(CR)FurtherexplanationofaspectsofCompressionRatioReciprocatingEnginesMostlayoutscreatedduringsecondWorldWarasaircraftmanufacturersstruggledtomaketheleast-compromisedinstallationThermodynamicsOttoCycleDieselCycleThrottledCycleSuperchargedCycleSource:InternalComb.EngineFund.ThermodynamicTermsMEP
–MeanEffectivePressureAveragecylinderpressureovermeasuringperiodTorqueNormalizedtoEngineDisplacement(VD)BMEP–BrakeMeanEffectivePressure
IMEP–IndicatedMeanEffectivePressure MEPofCompressionandExpansionStrokesPMEP–PumpingMeanEffectivePressure MEPofExhaustandIntakeStrokesFFMEP–FiringFrictionMeanEffectivePressure
BMEP=IMEP–PMEP–FFMEPThermodynamicTermscontinuedWork=Power=Work/UnitTimeSpecificPower
–Powerperunit,typicallydisplacementorweightPressure/VolumeDiagram
–EngineeringtooltographcylinderpressureIndicatedWorkTDCBDCSource:DesignandSimofFourStrokesTDCBDCSource:DesignandSimofFourStrokesPumpingWorkHistoryofInternalCombustion1878NiklausOttobuiltfirstsuccessfulfourstrokeengine1885GottliebDaimlerbuiltfirsthigh-speedfourstrokeengine1878sawSirDougaldClerkcompletefirsttwo-strokeengine(simplifiedbyJosephDayin1891)1891Panhard-LevassorvehiclewithfrontenginebuiltunderDaimlerlicenseEnergyDistributioninPassengerCarEnginesSource:SAE2000-01-2902(Ricardo)Source:AdvancedEngineTechnologyUsingExhaustEnergyHighestexpansionratiorecoversmostthermalenergyTurbinescanrecoverheatenergyleftoverfromgasexchangeEnergycanbeusedtodriveturbo-compressororfedbackintocranktrainSource:InternalComb.EngineFund.SuperchargingIncreasesspecificoutputbyincreasingchargedensityintoreciprocatorManymethodsofimplementation,costusuallyonlylimitingfactorMechanicalDesignTwoValveValvetrainPushrodOHV(Type5)HEMI2-Valve(Type5)SOHC2-Valve(Type2)FourValveValvetrainSOHC4-Valve(Type3)DOHC4-Valve(Type2)DOHC4-Valve(Type1)DesmodromicSpecificPower= f(AirFlow,ThermalEfficiency)Airflowisaneasiervariabletochangethanthermalefficiency90%ofrestrictionofinductionsystemoccursincylinderheadCylinderheadlayoutsthatallowthegreatestairflowwillhavehighestspecificpowerpotentialPeakflowfrompoppetvalveenginesprimarilyafunctionoftotalvalveareaMore/largervalvesequalsgreatervalveareaValvetrainCombustionTermsBrakePower–Powermeasuredbytheabsorber(brake)atthecrankshaftBSFC-BrakeSpecificFuelConsumption FuelMassFlowRate/BrakePower grams/kW-horlbs/hp-hLBTFuelling-LeanBestTorque LeanestFuel/AirtoAchieveBestTorque LBT=0.0780-0.0800FAor0.85-0.9LambdaThermalEnrichment–FueladdedforcoolingduetocomponenttemperaturelimitInjectorPulseWidth-TimeInjectorisOpenCombustionTermscontinuedSparkAdvance–TimingincrankdegreespriortoTDCforstartofcombustionevent(ignition)
MBTSpark–MaximumBrakeTorqueSpark MinimumSparkAdvancetoAchieveBestTorqueBurnRate–SpeedofCombustion Expressedasafractionoftotalheatreleasedversuscrankdegrees
MAP-ManifoldAbsolutePressure AbsolutenotGauge(doesnotreferencebarometer)CombustionTermscontinuedKnock
–Autoignitionofend-gassesincombustionchamber,causingextremeratesofpressurerise.KnockLimitSpark-MaximumSparkAllowedduetoKnock–canbehigherorlowerthanMBTPre-Ignition–Autoignitionofmixturepriortosparktiming,typicallyduetohightemperaturesofcomponentsCombustionStability–Cycletocyclevariationinburnrate,trappedmass,locationofpeakpressure,etc.Thelowerthevariationthebetterthestability.EngineArchitecture
InfluenceonPerformanceIntake&ExhaustManifoldTuningCylinderFilling&EmptyingMomentumPressureWaveAerodynamicsFlowSeparationWallFrictionJunctions&BendsInductionRestrictionExhaustRestriction(Backpressure)CompressionRatioValveEventsIntakeTuning
forWOTPerformanceIntakemanifoldshaveducts(“runners〞)thattuneatfrequenciescorrespondingtoenginespeed,likeanorganpipeLongerrunnerstuneatlowerfrequenciesShorterrunnerstuneathigherfrequenciesTuningincreaseslocalpressureatintakevalvetherebyincreasingflowrateDuctdiameterisatrade-offbetweenvelocityandwallfrictionofpassingchargeExhaustTuning
forWOTPerformanceExhaustmanifoldstunejustasintakemanifoldsdo,butsincenofreshchargeisbeingintroducedasaresult–notasmuchimpactonvolumetricefficiency(~8%maximumforheaders)CatalystperformanceusuallylimitsproductionexhaustsystemsthatflowacceptablywithlittletonotuningTunedHeadersTunedHeadersgenerallydonotappearonproductionenginesduetotheimpairmenttocatalystlight-offperformance(usuallyaminimumof150%additionaldistanceforcold-startexhaustheattobelost).Performancecanbeenhancedby3-8%across60%oftheoperatingrange.MomentumEffectsPressurelossinfluencesdictatethatductdiameterbeaslargeaspossibleforminimumfrictionIncreasingchargemomentumenhancescylinderfillingbyextendinginductionprocesspastunsteadydirectenergytransferofinductionstroke(iepistonmotion)DecreasingductdiameterincreasesavailablekineticenergyforagivenmassfluxThereforeductdiameterisatrade-offbetweenvelocityandwallfrictionofpassingchargePressureWaveEffectsInductionprocessandexhaustblowdownbothcausepressurepulsationsAbruptchangesofincreasedcross-sectioninthepathofapressurewavewillreflectawaveofoppositemagnitudebackdownthepathofthewaveClosed-endedductsreflectpressurewavesdirectly,thereforeawavewillechowithsameamplitudePressureWaveEffectscon’tFrictiondecreasesenergyofpressurewaves,thereforethe1storderreflectionisthestrongest–butupto5thorderhavebeenutilizedtogoodeffectinhighspeedengines(thusactiverunnersinF1inY2K)Plenumsalsoresonateandthroughsuperpositionincreasetheamplitudeofpressurewavesinrunners–smallimpactrelativetorunnergeometryEffectsofIntakeRunnerGeometryTuninginProductionI4EngineAerodynamicsLossesduetopooraerodynamicscanbeequalinmagnitudetothegainsfrompressurewavetuningOftenthedominantfactoryinpoorlyperformingOEcomponentsIfproperlydesigned,flowofasingle-entryintakemanifoldcanapproach98%ofanidealentranceonacylinderheadport(steadystateonaflowbench)Aerodynamicscon’tFlowSeparationLiterallysamephenomenonasstallinwingelements–pressureinfreestreaminsufficientto‘push’flowalongwallofshortsideradiusRecirculationpushesflowawayfromwall,therebyreducingeffectivecross-section:so-called“venacontracta〞Simpleguidelinescanpreventflowseparationinducts–studiesperformedbyNACAinthe1930sempiricallyestablishedthebestductconfigurationsAerodynamicscon’tWallFrictionSurfacefinishofductsneedtobeassmoothaspossibletoprevent‘tripping’offlowonamacrolevelJunctions&BendsEverythingfromyourfluiddynamicstextbookappliesRadiusedinletsandfree-standingpipeoutletsMinimizenumberofbendsAvoid‘S’bendsifatallpossibleInductionRestrictionAircleanerandintakemanifoldsprovidesomeresistancetoincomingchargePowerlossrelatedtorestrictionalmostdirectlyafunctionofratiobetweenmanifoldpressure(plenumpressureupstreamofrunners)andatmosphericExhaustRestrictionCompressionRatioThehighestpossiblecompressionratioisalwaysthedesignpoint,ashigherwillalwaysbemorethermallyefficientwithbetteridlequalityKnocklimitscompressionratiobecauseofcombustionstabilityissuesatlowenginespeedduetonecessarysparkretardMostenginesaredesignedwithhighercompressionthanisbestforlowspeedcombustionstabilitybecauseoftheassociatedpart-loadBSFCbenefitsandhighspeedpowerValveEventsValveeventsdefinehowanenginebreathesallthetime,andsoareanimportantaspectoflowloadaswellashighloadperformanceValveeventsalsoeffectivelydefinecompression&expansionratio,as“compression〞willnotbeginuntilthepiston-cylindermechanismissealed–samewithexpansionValveEventTimingDiagramSpiderPlot-DescribestimingpointsforvalveeventswithrespecttoCrankPositionCamCenterline-PeakValveLiftwithrespecttoTDCinCrankDegreesValveEventsforPowerMaximizeTrappingEfficiencyIntakeclosingthatisbestcompromisebetweencompressionstrokebackflowandinductionmomentum(retardwithincreasingenginespeed)EarlyintakeclosingusefulnesslimitedatlowenginespeedduetoknocklimitEarlyintakeopeningwillimpartsomeexhaustblowdownorpressurewavetuningmomentumtointakechargeMaximizeThermalEfficiencyEarliestintakeclosingtomaximizecompressionratioforbestburnrate(optimumisinstantaneousafterTDC)LatestexhaustopeningtomaximizeexpansionratioforbestuseofheatenergyandlowestEGT(leastthermalprotectionenrichmentbeyondLBT)ValveEventsforPowerMinimizeFlowLossAchievemaximumvalvelift(maxflowusuallyatL/D>0.25-0.3)aslongaspossible(squareliftcurvesareoptimumforpoppetvalves)MinimizeExhaustPumpingWorkEarliestexhaustopeningthatblowsdowncylinderpressuretobackpressurelevelsbeforeexhauststroke(advancewithincreasingenginespeed)Earliestexhaustclosingthatavoidsrecompressionspike(retardwithincreasingenginespeed)EnginePowerandBSFCvsEngineSpeedSummaryComponent’sRelativeImpactonPerformanceCylinderHeadPorts&ValveAreaValveEventsIntakeManifoldRunnerGeometryCompressionRatioExhaustHeaderGeometryExhaustRestrictionAirCleanerRestrictionPowertrainClosingRemarksPowertrainiscompromiseFour-strokeenginesarevolumetricflowratedevices–theonlyroutetomorepowerisincreasedenginespeed,morevalveareaorincreasedchargedensityMorespeed,chargedensityorvalveareaareexpensiveordifficulttodevelop–thereforeminimizinglossesisthemostefficientpathwithinexistingenginearchitecturesHighestaveragepowerduringavehicleaccelerationisfastest–peakpowervaluesdon’twinracesBreakCalibrationWhatisit?Optimizingthecontrolsystem(oncehardwareisfinalized)fordrivability,durability&emissionsIt’sjustsparkandfuel–howhardcoulditbe?KnowledgeofThermodynamics,CombustionandControlTheoryallplayinFortunatelyraceengineshavenoemissionsconstraintsanduseracefuel(usuallyeliminatesanyknock)–thereforearerelativelyeasytocalibrateCalibrationTermsStoichiometry
–ChemicallycorrectratiooffueltoairforcombustionF/A–Fuel/AirRatio Massratioofmixture,adeterminationofrichnessorleanness. Stoichiometry=0.0688-0.0696FALambda–ExcessAirRatio Stoichiometry=1.0LambdaRichF/A–F/AgreaterthanStoichiometry Rich<1.0LambdaLeanF/A–F/AlessthanStoichiometry Lean>1.0LambdaCalibrationTermscontinuedBrakePower–Powermeasuredbytheabsorber(brake)atthecrankshaftBSFC-BrakeSpecificFuelConsumption FuelMassFlowRate/BrakePower grams/kW-horlbs/hp-hLBTFuelling–LeanBestTorque LeanestFuel/AirtoAchieveBestTorque LBT=0.0780-0.0800FAor0.85-0.9LambdaThermalEnrichment–FueladdedforcoolingduetoexhaustcomponenttemperaturelimitInjectorPulseWidth-TimeInjectorisOpenCalibrationTermscontinuedSparkAdvance–TimingincrankdegreespriortoTDCforstartofcombustionevent(ignition)
MBTSpark-MaximumBrakeTorque MinimumSparkAdvancetoAchieveBestTorqueBurnRate–SpeedofCombustion Expressedasafractionoftotalheatreleasedversuscrankdegrees
MAP-ManifoldAbsolutePressure AbsolutenotGauge(whichreferencesbarometer)ControlSystemTypesAlpha-NEngineSpeed&ThrottleAngleSpeed-DensityEngineSpeedandMAP/ACTMAFEngineSpeedandMAFAlpha-NFuelandsparkmapsarebasedonthrottleangle–whichisverynon-linearandrequirescompletemappingofengineGoodthrottleresponseoncedialedinDensitycompensation(altitudeandtemperature)isusuallyabsent–needstoberecalibratedeverytimecargoesoutSpeed-DensityFuelandsparkmapsarebasedonMAP–densityofchargeisastrongfunctionofpressure,correctedbyairtempandcoolanttempthereforeairflowissimpletocalculateLesstime-intensivethanAlpha-N,oncecalibratedisgood–mostcommontypeofcontrolNeedslessmapping–candoWOTlineandmid-mapthencurve-fitairflow(sparkneedsalittlemorein-depthforoptimalcontrol)MAFFuelandsparkmapsarebasedonMAF–airflowmeasureddirectlyMAFsensorisn’tthemostrobustdevicePressurepulsesconfusesignal,eachapplicationhastobemappedwithsecondarydampedMAFsensor(usuallya55gallondruminline)Leastnoisysignalisusuallyataircleaner–soseparatetransportdelaycontrolsneedtobecalibratedfortransientsandleaksneedtobeabsolutelyeliminatedBoostedapplicationsusuallyaddaMAPaswellControlSystemComponentsFuelSystemInjectors,Fuelpump&RegulatorBasicSensorsManifoldAbsolutePressure(MAP)orMassAirFlow(MAF)CrankPosition(Rpm&TDC)CamPosition(Sync)AirChargeTemp(ACT)EngineCoolantTemp(ECT)KnockSensorLamdaSensorFuelSystemInjectorsVolumetricflowratesolenoids,linearrelationshipbetweenpulsewidthandflowforgivenpressuredeltaBatteryoffsetistimenecessarytoopenandclosesolenoid–timeisfixedforanyvoltageDutycycleisinjectorontime–it’llgostaticabove95%Bernoullirelationshipfordifferentpressuredeltas–allowingdifferingflowratesforagiveninjectorHighimpedanceinjectorshavelowerdynamicrangeandloweramperageandthuslessheatincontrollerFuelPump&RegulatorPressureneedstobesufficientlyhightopreventvapourlock(>4bar)andlowenoughthatenginecanidleIn-tankregulationaddsleastheatbuthasline-lossasflowrateincreases,iefuelpressurechangeswithflowManifold-referencedregulationcanhelpinjectorsachievehigherflowratesatelevatedboostorlowerflowsatlowvacuum–makingcalibrationmorecomplicatedBernoulliEffectofFuelPressureSensorsManifoldAbsolutePressure(MAP)Avariable-resistancediaphragmwithperfectvacuumononesideandmanifoldpressureonotherMassAirFlow(MAF)Aheatingelementfollowedbyatemperature-sensitiveelement.HeatedelementismaintainedataconstanttemperatureandbaseduponthemeasureddownstreamtemperaturethemassflowratecanbedeterminedCrankPositionHighresolutionforsparkadvance,less-soforcrankspeedandwithonce-per-revcanindicateTDCCamPositionLowresolutionforsyncronizationforsequentialfuelinjectionandindividualcylindersparkAirChargeTempandEngineCoolantTempThermistorsusedforairdensitycorrectionandstartupenrichmentSensors,contKnockSensorApiezoelectricloadcellthatmeasuresstructuralvibration.Knockisapressurewavethattravelsatlocalsonicvelocityand‘rings’atafrequencythatisafunctionofborediameter(typicallybetween14-18kHz).Whenthestructureoftheengine(typicallytheblock)ishitwiththispressurewaveitringsaswell,butatafrequencythatisafunctionofthestructure(iematerialsandgeometry).AFFTanalysisofdifferentmountingpositions(nodesnotanti-nodes)isnecessarytodeterminethe‘centerfrequency’tolistenforknock(whichismeasuredviain-cylinderpressuremeasurements)withoutpickingupotherstructure-bornenoise.Sensors,contLamdaSensor(EGO)Comparesambientairtoexhaustoxygencontent(partialpressureofoxygen).Sensoroutputisessentiallybinary(onlyindicatesrichorleanofstoichiometry).Wide-bandLamdaSensor(UEGO)Comparespartialpressureofoxygen(lean)andpartialpressureofHmCn,H2&CO(rich)withambient.Givesoutputfrom~0.6to2Lamda.UEGOSchematicEGOSchematicCalibrationGoalsCombustion&ThermodynamicsWork,Power&MeanEffectivePressuresKnock,Pre-IgnitionBurnRateTransientsWallfilmThermalEnrichmentDrivabilityKnockCausesofKnockKnock=f(Time,Temperature,Pressure,Octane)Time–Higherenginespeedsorfasterburnratesreduceknocktendency.Burnratecancomefrommultiplesparksources,morecompactcombustionchambersorincreasedturbulenceTemperature–Reducedcombustiontemperaturesreduceknockthroughreducedchargetemperatures(coolerincomingchargeorreducedresidualburnedgases),increasedevaporativecoolingfromricherF/AmixturesandincreasedcombustionchambercoolingPressure–LowercylinderpressuresreduceknocktendencythroughlowercompressionratioorMAPpressureOctane–Differentfueltypeshavehigherorlowerautoignitiontendencies.OctanevalueisdirectlyrelatedtoknockingtendencyKnockcontinuedEffectsofKnockDisruptsstagnantgasesthatformboundarylayeratedgeofcombustionchamber,increasingheattransfertocomponentsandraisingmeancombustionchambertempthatcanleadtopre-ignitionScoursoilfilmoffcylinderwall,leadingtodryfrictionandincreasedwearofpistonringsShockwavecaninducevibratoryloadsintopistonpin,pistonpinboreandtopland-reducingoilfilmthicknessandacceleratingwearShockwavecanbestrongenoughtostresscomponentstofailureIn-cylinderPressureMeasurementPiezoelectricpressuretransducersdevelopchargewithchangesinpressureInstalledincombustionchamberwallorsparkplugtomeasurefull-cyclepressuresTypicalpressureprobeinstallationPassagedrilledthroughdeckface(avoidingcoolantjacket)CylinderPressureTrace
NoKnockCylinderPressureTrace
KnockLimitorTraceKnock-BestPowerCylinderPressureTrace
SevereDamagingKnockPre-IgnitionEffectsofPre-IgnitionIncreasespeakcylinderpressurebybeginningheatreleasetoosoonIncreasedcylinderpressurealsoincreasesheatloadtocombustionchambercomponents,sustainingthepre-ignition(leadingto‘run-awaypre-ignition’)IncreasesloadsonpistoncrownandpistonpinSustainedpre-ignitionwilltypicallyputaholeinthecenterofthepistoncrownBurnRateBurnRate=f(Spark,DilutionRate/FARatio,ChamberVolumeDistribution,EngineSpeed/MixtureMotion/TurbulentIntensity)SparkClosertoMBTthefastertheburnwithtraceknockthefastestDilutionRate/FARatioLeastdilution(exhaustresidualoranythingunburnable)fastestFARatiobestratearoundLBTChamberVolumeDistributionSmallestchamberwithshortestflamepathbest(multipleignitionsourcesshortenflamepath)EngineSpeed/MixtureMotion/TurbulentIntensityCrankangletimeforcompleteburnnearlyconstantwithincreasingenginespeedindicatingotherfactorsspeedingburnrateMixturemotion-contributedangularmomentumconservedascylindervolumedecreasesduringcompressionstroke,eventuallybreakingdownintovorticesaroundTDCincreasingkineticenergyinchargeTurbulentIntensityameasureoftotalkineticenergyavailabletomoveflamefrontfasterthanlaminarflamespeed.MoreTurbulentIntensityequalsfasterburn.Combustion&ThermodynamicsSummaryPeakSpecificPowerLBTfuellingforbestcompromisebetweenavailableoxygenandchargedensityMBTsparkifpossible,fastburnrateassumedatpeakloadHighestenginespeedtoallowhighestcompressionratioHighestoctanePeakThermalEfficiencyatdesiredloadHighestcompressionratiowillhavebestcombustion,usuallywithhighestexpansionratioforbestuseofthermalenergyMBTsparkwithfastestburnrate10%leanofstoichiometrywillprovidebestcompromisebetweenheatlossesandpumpingwork,butnotusedbecauseofcatalystperformanceimpactsinpasscarsTransientFuellingLiquidfueldoesnotburn,onlyfuelvapourHeatfromsomewheremustbeusedtomakevapour–whichiswhyupto500%morefuelmustbeusedonacoldstarttoprovidesufficien
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 南京创业公司管理制度
- 公司行政基础管理制度
- 公司机关防疫管理制度
- 期货采购方案(3篇)
- 公益课堂策划管理制度
- 医学装备出库管理制度
- 公司研发基金管理制度
- 养老护理服务管理制度
- DB62T 4483-2021 绿色食品 大棚草莓生产技术规程
- DB62T 4384-2021 辣椒品种 苏武红
- 移动式冷库租赁合同协议
- 2025年山东济南先行投资集团有限责任公司招聘笔试参考题库附带答案详解
- 2025-2030中国氧化镓行业市场发展趋势与前景展望战略研究报告
- 2025年新兴产业投资热点试题及答案
- UPS电源项目总结分析报告
- DB11-T 1315-2025 北京市绿色建筑工程验收标准
- 新生儿健康评估相关试题及答案
- 招商岗位测试题及答案
- 2025中考语文常考作文押题反反复复就考这10篇篇篇惊艳
- 2025至2030年液压马达行业深度研究报告
- 2025年税务师考试全面覆盖试题及答案
评论
0/150
提交评论