陕西省武功县2023-2024学年九年级数学第一学期期末学业质量监测试题含解析_第1页
陕西省武功县2023-2024学年九年级数学第一学期期末学业质量监测试题含解析_第2页
陕西省武功县2023-2024学年九年级数学第一学期期末学业质量监测试题含解析_第3页
陕西省武功县2023-2024学年九年级数学第一学期期末学业质量监测试题含解析_第4页
陕西省武功县2023-2024学年九年级数学第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省武功县2023-2024学年九年级数学第一学期期末学业质量监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.若一元二次方程kx2﹣3x﹣=0有实数根,则实数k的取值范围是()A.k=﹣1 B.k≥﹣1且k≠0 C.k>﹣1且k≠0 D.k≤﹣1且k≠02.已知一次函数和二次函数部分自变量和对应的函数值如表:x…-10245…y1…01356…y2…0-1059…当y2>y1时,自变量x的取值范围是A.-1<x<2 B.4<x<5 C.x<-1或x>5 D.x<-1或x>43.截止到2018年底,过去五年我国农村贫困人口脱贫人数约为7000万,脱贫攻坚取得阶段性胜利,这里“7000万”用科学记数法表示为()A.7×103 B.7×108 C.7×107 D.0.7×1084.如图,菱形在第一象限内,,反比例函数的图象经过点,交边于点,若的面积为,则的值为()A. B. C. D.45.如图,平行四边形ABCD中,EF∥BC,AE:EB=2:3,EF=4,则AD的长为()A. B.8 C.10 D.166.已知反比例函数的图象经过点(m,3m),则此反比例函数的图象在()A.第一、二象限 B.第一、三象限 C.第二、四象限 D.第三、四象限7.如图,双曲线的一个分支为()A.① B.② C.③ D.④8.下列方程中,属于一元二次方程的是()A. B. C. D.9.随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷两次骰子,掷得面朝上的点数之和是5的概率是()A. B. C. D.10.如图,在△ABC中,AB=6,AC=8,BC=9,将△ABC沿图中的线段剪开,剪下的阴影三角形与原三角形不相似的是()A. B.C. D.11.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长六寸,问径几何?”用现代的数学语言表述是:“CD为的直径,弦,垂足为E,CE=1寸,AB=10寸,求直径CD的长”,依题意得CD的长为()A.12寸 B.13寸 C.24寸 D.26寸12.如图,某水库堤坝横断面迎水坡AB的坡比是1:,堤坝高BC=50m,则应水坡面AB的长度是()A.100m B.100m C.150m D.50m二、填空题(每题4分,共24分)13.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为_______米(结果保留根号).14.分解因式:4x3﹣9x=_____.15.分解因式:x3﹣4x2﹣12x=_____.16.如图,是⊙的直径,,点、在⊙上,、的延长线交于点,且,,有以下结论:①;②劣弧的长为;③点为的中点;④平分,以上结论一定正确的是______.17.若⊙O是等边△ABC的外接圆,⊙O的半径为2,则等边△ABC的边长为__.18.反比例函数的图象经过点,,点是轴上一动点.当的值最小时,点的坐标是__________.三、解答题(共78分)19.(8分)如图,在中,,,垂足为,为上一点,连接,作交于.(1)求证:.(2)除(1)中相似三角形,图中还有其他相似三角形吗?如果有,请把它们都写出来.(证明不做要求)20.(8分)如图,已知抛物线经过原点O,顶点为A(1,1),且与直线交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求△ABC的面积;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.21.(8分)如图,把Rt△ABC绕点A.逆时针旋转40°,得到在Rt△ABʹCʹ,点Cʹ恰好落在边AB上,连接BBʹ,求∠BBʹCʹ的度数.22.(10分)如图,图中每个小方格都是边长为1个单位长度的正方形,在方格纸中的位置如图所示.(1)请在图中建立平面直角坐标系,使得,两点的坐标分别为,,并写出点的坐标;(2)在图中作出绕坐标原点旋转后的,并写出,,的坐标.23.(10分)如图,某高速公路建设中需要确定隧道AB的长度.已知在离地面1500m高度C处的飞机上,测量人员测得正前方A、B两点处的俯角分别为60°和45°.求隧道AB的长(≈1.73).24.(10分)某高级酒店为了吸引顾客,设立了一个可以自由转动的转盘,如图所示,并规定:顾客消费100以上(不包括100元),就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准九折、八折、七折、五折区域顾客就可以获得此项待遇(转盘等分成16份).(1)甲顾客消费80元,是否可获得转动转盘的机会?(2)乙顾客消费150元,获得打折待遇的概率是多少?(3)他获得九折,八折,七折,五折待遇的概率分别是多少?25.(12分)某网络经销商销售一款夏季时装,进价每件60元,售价每件130元,每天销售30件,每销售一件需缴纳网络平台管理费4元.未来30天,这款时装将开展“每天降价1元”的促销活动,即从第一天起每天的单价均比前一天降1元,通过市场调查发现,该时装单价每降1元,每天销售量增加5件,设第x天(1≤x≤30且x为整数)的销量为y件.(1)直接写出y与x的函数关系式;(2)在这30天内,哪一天的利润是6300元?(3)设第x天的利润为W元,试求出W与x之间的函数关系式,并求出哪一天的利润最大,最大利润是多少?26.已知:如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于一、三象限内的A.B两点,与x轴交于C点,点A的坐标为(2,m),点B的坐标为(n,-2),tan∠BOC=.(l)求该反比例函数和一次函数的解析式;(2)在x轴上有一点E(O点除外),使得△BCE与△BCO的面积相等,求出点E的坐标.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据一元二次方程根的判别式△=9+9k≥0即可求出答案.【详解】解:由题意可知:△=9+9k≥0,∴k≥﹣1,∵k≠0,∴k≥﹣1且k≠0,故选:B.【点睛】本题考查了根据一元二次方程根的情况求方程中的参数,解题的关键是熟知一元二次方程根的判别式的应用.2、D【分析】利用表中数据得到直线与抛物线的交点为(-1,0)和(1,5),-1<x<1时,y1>y2,从而得到当y2>y1时,自变量x的取值范围.【详解】∵当x=0时,y1=y2=0;当x=1时,y1=y2=5;∴直线与抛物线的交点为(-1,0)和(1,5),而-1<x<1时,y1>y2,∴当y2>y1时,自变量x的取值范围是x<-1或x>1.故选D.【点睛】本题考查了二次函数与不等式:对于二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.3、C【分析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.【详解】将数据7000万用科学记数法表示为.

故选:C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,为整数,表示时关键要正确确定的值以及的值.4、C【分析】过A作AE⊥x轴于E,设OE=,则AE=,OA=,即菱形边长为,再根据△AOD的面积等于菱形面积的一半建立方程可求出,利用点A的横纵坐标之积等于k即可求解.【详解】如图,过A作AE⊥x轴于E,设OE=,在Rt△AOE中,∠AOE=60°∴AE=,OA=∴A,菱形边长为由图可知S菱形AOCB=2S△AOD∴,即∴∴故选C.【点睛】本题考查了反比例函数与几何综合问题,利用特殊角度的三角函数值表示出菱形边长及A点坐标是解决本题的关键.5、C【分析】根据平行于三角形一边的直线和其他两边相交,所截得的三角形与原三角形相似,可证明△AEF∽△ABC,再根据相似三角形的对应边成比例可解得BC的长,而在▱ABCD中,AD=BC,问题得解.【详解】解:∵EF∥BC∴△AEF∽△ABC,∴EF:BC=AE:AB,∵AE:EB=2:3,∴AE:AB=2:5,∵EF=4,∴4:BC=2:5,∴BC=1,∵四边形ABCD是平行四边形,∴AD=BC=1.【点睛】本题考查(1)、相似三角形的判定与性质;(2)、平行四边形的性质.6、B【详解】解:将点(m,3m)代入反比例函数得,k=m•3m=3m2>0;故函数在第一、三象限,故选B.7、D【解析】∵在中,k=8>0,∴它的两个分支分别位于第一、三象限,排除①②;又当=2时,=4,排除③;所以应该是④.故选D.8、D【分析】根据一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0,对各选项分析判断后利用排除法求解.【详解】解:A.不是一元二次方程;B.不是一元二次方程;C.整理后可知不是一元二次方程;D.整理后是一元二次方程;故选:D.【点睛】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).9、B【分析】首先根据题意列出表格,然后由表格求得所有等可能的结果与掷得面朝上的点数之和是5的情况,再利用概率公式求解即可求得答案.【详解】解:列表得:

123456123456723456783456789456789105678910116789101112∵共有36种等可能的结果,掷得面朝上的点数之和是5的有4种情况,

∴掷得面朝上的点数之和是5的概率是:.

故选:B.【点睛】此题考查的是用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.10、B【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【详解】A、根据两边成比例,夹角相等,故两三角形相似,故本选项错误;B、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;C、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.D、根据两边成比例,夹角相等,故两三角形相似,故本选项错误;故选:B.【点睛】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.11、D【分析】连接AO,设直径CD的长为寸,则半径OA=OC=寸,然后利用垂径定理得出AE,最后根据勾股定理进一步求解即可.【详解】如图,连接AO,设直径CD的长为寸,则半径OA=OC=寸,∵CD为的直径,弦,垂足为E,AB=10寸,∴AE=BE=AB=5寸,根据勾股定理可知,在Rt△AOE中,,∴,解得:,∴,即CD长为26寸.【点睛】本题主要考查了垂径定理与勾股定理的综合运用,熟练掌握相关概念是解题关键.12、A【解析】∵堤坝横断面迎水坡AB的坡比是1:,∴,∵BC=50,∴AC=50,∴(m).故选A二、填空题(每题4分,共24分)13、一4【分析】分析:利用特殊三角函数值,解直角三角形,AM=MD,再用正切函数,利用MB求CM,作差可求DC.【详解】因为∠MAD=45°,AM=4,所以MD=4,因为AB=8,所以MB=12,因为∠MBC=30°,所以CM=MBtan30°=4.所以CD=4-4.【点睛】本题考查了解直角三角形的应用,熟练掌握三角函数的相关定义以及变形是解题的关键.14、x(2x+3)(2x﹣3)【分析】先提取公因式x,再利用平方差公式分解因式即可.【详解】原式=x(4x2﹣9)=x(2x+3)(2x﹣3),故答案为:x(2x+3)(2x﹣3)【点睛】本题考查了提公因式法与公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15、x(x+2)(x-6).【分析】因式分解的步骤:先提公因式,再利用其它方法分解,注意分解要彻底.首先提取公因式x,然后利用十字相乘法求解,【详解】解:x3﹣4x2﹣12x=x(x2﹣4x﹣12)=x(x+2)(x﹣6).【点睛】本题考查因式分解-十字相乘法;因式分解-提公因式法,掌握因式分解的技巧正确计算是本题的解题关键.16、①②③【分析】①根据圆内接四边形的外角等于其内对角可得∠CBE=∠ADE,根据等边对等角得出∠CBE=∠E,等量代换即可得到∠ADE=∠E;②根据圆内接四边形的外角等于其内对角可得∠A=∠BCE=70,根据等边对等角以及三角形内角和定理求出∠AOB=40,再根据弧长公式计算得出劣弧的长;③根据圆周角定理得出∠ACD=90,即AC⊥DE,根据等角对等边得出AD=AE,根据等腰三角形三线合一的性质得出∠DAC=∠EAC,再根据圆周角定理得到点C为的中点;④由DB⊥AE,而∠A≠∠E,得出BD不平分∠ADE.【详解】①∵ABCD是⊙O的内接四边形,∴∠CBE=∠ADE,∵CB=CE,∴∠CBE=∠E,∴∠ADE=∠E,故①正确;②∵∠A=∠BCE=70,∴∠AOB=40,∴劣弧的长=,故②正确;③∵AD是⊙O的直径,∴∠ACD=90,即AC⊥DE,∵∠ADE=∠E,∴AD=AE,∴∠DAC=∠EAC,∴点C为的中点,故③正确;④∵DB⊥AE,而∠A≠∠E,∴BD不平分∠ADE,故④错误.所以正确结论是①②③.故答案为①②③.【点睛】本题考查了圆内接四边形的性质,圆周角定理,弧长的计算,等腰三角形的判定与性质,三角形内角和定理,掌握相关性质及公式是解题的关键.17、【解析】试题解析:如图:连接OA交BC于D,连接OC,是等边三角形,是外心,故答案为18、【分析】先求出A,B点的坐标,找出点B关于y轴的对称点D,连接AD与y足轴交于点C,用待定系数法可求出直线AD的解析式,进而可求出点C的坐标.【详解】解:如下图,作点点B关于y轴的对称点D,连接AD与y足轴交于点C,∵反比例函数的图象经过点,,∴设直线AD解析式为:y=kx+b,将A,D坐标代入可求出:∴直线AD解析式为:∴点的坐标是:故答案为:.【点睛】本题考查的知识点是利用对称求线段的最小值,解题的关键是根据反比例函数求出各点的坐标.三、解答题(共78分)19、(1)证明见解析;(2)有,见解析.【分析】(1)通过线段垂直和三角形内角之和为180°求出和,从而证明.(2)通过两内角相等写出所有相似三角形即可.【详解】(1)∵∴,∴又∵,∴,又∵∴,又∵,∴,∴,∴(2)∵,∴;∴,∴,同理得,∴,即,【点睛】本题考查了相似三角形的性质以及证明,掌握相似三角形的判定定理是解题的关键.20、(1)y=﹣(x﹣1)2+1,C(﹣1,﹣3);(2)3;(3)存在满足条件的N点,其坐标为(,0)或(,0)或(﹣1,0)或(5,0)【分析】(1)可设顶点式,把原点坐标代入可求得抛物线解析式,联立直线与抛物线解析式,可求得C点坐标;(2)设直线AC的解析式为y=kx+b,与x轴交于D,得到y=2x−1,求得BD于是得到结论;(3)设出N点坐标,可表示出M点坐标,从而可表示出MN、ON的长度,当△MON和△ABC相似时,利用三角形相似的性质可得或,可求得N点的坐标.【详解】(1)∵顶点坐标为(1,1),∴设抛物线解析式为y=a(x﹣1)2+1,又抛物线过原点,∴0=a(0﹣1)2+1,解得a=﹣1,∴抛物线解析式为y=﹣(x﹣1)2+1,即y=﹣x2+2x,联立抛物线和直线解析式可得,解得或,∴B(2,0),C(﹣1,﹣3);(2)设直线AC的解析式为y=kx+b,与x轴交于D,把A(1,1),C(﹣1,﹣3)的坐标代入得,解得:,∴y=2x﹣1,当y=0,即2x﹣1=0,解得:x=,∴D(,0),∴BD=2﹣=,∴△ABC的面积=S△ABD+S△BCD=××1+××3=3;(3)假设存在满足条件的点N,设N(x,0),则M(x,﹣x2+2x),∴ON=|x|,MN=|﹣x2+2x|,由(2)知,AB=,BC=3,∵MN⊥x轴于点N,∴∠ABC=∠MNO=90°,∴当△ABC和△MNO相似时,有或,①当时,∴,即|x||﹣x+2|=|x|,∵当x=0时M、O、N不能构成三角形,∴x≠0,∴|﹣x+2|=,∴﹣x+2=±,解得x=或x=,此时N点坐标为(,0)或(,0);②当或时,∴,即|x||﹣x+2|=3|x|,∴|﹣x+2|=3,∴﹣x+2=±3,解得x=5或x=﹣1,此时N点坐标为(﹣1,0)或(5,0),综上可知存在满足条件的N点,其坐标为(,0)或(,0)或(﹣1,0)或(5,0).【点睛】本题为二次函数的综合应用,涉及知识点有待定系数法、图象的交点问题、直角三角形的判定、勾股定理及逆定理、相似三角形的性质及分类讨论等.在(1)中注意顶点式的运用,在(3)中设出N、M的坐标,利用相似三角形的性质得到关于坐标的方程是解题的关键,注意相似三角形点的对应.本题考查知识点较多,综合性较强,难度适中.21、20°【分析】利用旋转的性质及等腰三角形的性质可得∠ABBʹ,再根据直角三角形两锐角互余可得解.【详解】解:由旋转可知:∠BABʹ=40°,AB=ABʹ.∴∠ABBʹ=∠ABʹB.∴∠ABBʹ==70°.∴∠BBʹCʹ=90°-70°=20°.【点睛】本题考查了三角形的旋转,灵活利用旋转对应边相等,对应角相等且等于旋转角的性质是解题的关键.22、(1)图形见解析,点坐标;(2)作图见解析,,,的坐标分别是【分析】(1)根据已知点的坐标,画出坐标系,由坐标系确定C点坐标;(2)由关于原点中心对称性画,可确定写出,,的坐标.【详解】解:(1),把向左平移两个单位长度,再向上平移一个单位长度,得到原点O,建立如下图的直角坐标系,C(3,-3);(2)分别找到的对称点,,,顺次连接,,,即为所求,如图所示,(-2,1),(-1,4),(-3,3).【点睛】本题考查了作图-旋转变换,熟练掌握网格结构,准确找出对应点的位置是解题的关键.23、隧道AB的长约为635m.【分析】首先过点C作CO⊥AB,根据Rt△AOC求出OA的长度,根据Rt△CBO求出OB的长度,然后进行计算.【详解】如图,过点C作CO⊥直线AB,垂足为O,则CO=1500m∵BC∥OB∴∠DCA=∠CAO=60°,∠DCB=∠CBO=45°∴在Rt△CAO中,OA==1500×=500m在Rt△CBO中,OB=1500×tan45°=1500m∴AB=1500-500≈1500-865=635(m)答:隧道AB的长约为635m.考点:锐角三角函数的应用.24、(1)因为规定顾客消费100元以上才能获得一次转动转盘的机会,所以甲顾客消费80元,不能获得转动转盘的机会;(2)(3)P(九折);

P(八折)=

=P(七折)=P(五折)

.【分析】(1)根据顾客消费100元以上(不包括100元),就能获得一次转动转盘的机会可知,消费80元达不到抽奖的条件;(2)根据题意乙顾客消费150元,能获得一次转动转盘的机会.根据概率的计算方法,可得答案;(3)根据概率的计算方法,可得九折,八折,七折,五折待遇的概率.【详解】(1)因为规定顾客消费100元以上才能获得一次转动转盘的机会,所以甲顾客消费80元,不能获得转动转盘的机会;(2)乙顾客消费150元,能获得一次转动转盘的机会.由于转盘被均分成16份,其中打折的占5份,所以P(打折)=.(3)九折占2份,P(九折)==;八折、七折、五折各占1份,P(八折)=,P(七折)=,P(五折)=.【点睛】本题考查概率的求法

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论