版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市黄埔区大境中学2023年高一数学第一学期期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.我国东汉数学家赵爽在《周髀算经》中利用一副“弦图”给出了勾股定理的证明,后人称其为“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如图所示,在“赵爽弦图”中,若,,,则()A. B.C. D.2.如图,在三棱锥S-ABC中,G1,G2分别是△SAB和△SAC的重心,则直线G1G2与BC的位置关系是()A.相交 B.平行C.异面 D.以上都有可能3.下列各对角中,终边相同的是()A.和 B.和C.和 D.和4.已知向量且,则x值为().A.6 B.-6C.7 D.-75.若,则角终边所在象限是A.第一或第二象限 B.第一或第三象限C.第二或第三象限 D.第三或第四象限6.函数的最大值为A.2 B.C. D.47.函数的最小正周期为()A. B.C. D.8.已知扇形的周长是6,圆心角为,则扇形的面积是()A.1 B.2C.3 D.49.方程的解所在的区间是A. B.C. D.10.在中,如果,,,则此三角形有()A.无解 B.一解C.两解 D.无穷多解二、填空题:本大题共6小题,每小题5分,共30分。11.已知集合,,且,则实数的取值范围是__________12.如图,已知△和△有一条边在同一条直线上,,,,在边上有个不同的点F,G,则的值为______13.终边上一点坐标为,的终边逆时针旋转与的终边重合,则______.14.已知向量,其中,若,则的值为_________.15.已知直线与圆C:相交于A,B两点,则|AB|=____________16.已知函数,则__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知角终边上有一点,且.(1)求的值,并求与的值;(2)化简并求的值.18.已知函数的图象关于原点对称,且当时,(1)试求在R上的解析式;(2)画出函数的图象,根据图象写出它的单调区间.19.已知函数(Ⅰ)求在区间上的单调递增区间;(Ⅱ)若,,求的值20.如图,在棱长为1正方体中:(1)求异面直线与所成的角的大小;(2)求三棱锥体积21.已知函数的图象过点.(Ⅰ)求实数的值;(Ⅱ)若不等式恒成立,求实数的取值范围;(Ⅲ)若函数,,是否存在实数使得的最小值为,若存在请求出的值;若不存在,请说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】利用平面向量的线性运算及平面向量的基本定理求解即可【详解】∵∴∵∴=∴=,∴故选:C2、B【解析】因为G1,G2分别是△SAB和△SAC的重心,所以,所以.又因为M、N分别为AB、AC的中点,所以MN//BC,所以考点:线面平行的判定定理;线面平行的性质定理;公理4;重心的性质点评:我们要掌握重心性质:若G1为△SAB的重心,M为AB中点,则3、C【解析】利用终边相同的角的定义,即可得出结论【详解】若终边相同,则两角差,A.,故A选项错误;B.,故B选项错误;C.,故C选项正确;D.,故D选项错误.故选:C.【点睛】本题考查终边相同的角的概念,属于基础题.4、B【解析】利用向量垂直的坐标表示可以求解.【详解】因为,,所以,即;故选:B.【点睛】本题主要考查平面向量垂直的坐标表示,熟记公式是求解的关键,侧重考查数学运算的核心素养.5、D【解析】利用同角三角函数基本关系式可得,结合正切值存在可得角终边所在象限【详解】,且存在,角终边所在象限是第三或第四象限故选D【点睛】本题考查三角函数的象限符号,是基础题6、B【解析】根据两角和的正弦公式得到函数的解析式,结合函数的性质得到结果.【详解】函数根据两角和的正弦公式得到,因为x根据正弦函数的性质得到最大值为.故答案为B.【点睛】这个题目考查了三角函数的两角和的正弦公式的应用,以及函数的图像的性质的应用,题型较为基础.7、C【解析】根据正弦型函数周期的求法即可得到答案.【详解】故选:C.8、B【解析】设扇形的半径为r,弧长为l,先由周长求出半径和弧长,即可求出扇形的面积.【详解】设扇形的半径为r,弧长为l,因为圆心角为,所以.因为扇形的周长是6,所以,解得:.所以扇形的面积是.故选:B9、C【解析】根据零点存在性定理判定即可.【详解】设,,根据零点存在性定理可知方程的解所在的区间是.故选:C【点睛】本题主要考查了根据零点存在性定理判断零点所在的区间,属于基础题.10、A【解析】利用余弦定理,结合一元二次方程根的判别式进行求解即可.【详解】由余弦定理可知:,该一元二次方程根的判别式,所以该一元二次方程没有实数根,故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】,是的子集,故.【点睛】本题主要考查集合的研究对象和交集的概念,考查指数不等式的求解方法,考查二次函数的值域等知识.对于一个集合,首先要确定其研究对象是什么元素,是定义域还是值域,是点还是其它的元素.二次函数的值域主要由开口方向和对称轴来确定.在解指数或对数不等式时,要注意底数对单调性的影响.12、16【解析】由题意易知:△和△为全等的等腰直角三角形,斜边长为,,故答案为16点睛:平面向量数量积类型及求法(1)求平面向量数量积有三种方法:一是夹角公式a·b=|a||b|cosθ;二是坐标公式a·b=x1x2+y1y2;三是利用数量积的几何意义.本题就是利用几何意义处理的.(2)求较复杂的平面向量数量积的运算时,可先利用平面向量数量积的运算律或相关公式进行化简.13、【解析】由题知,进而根据计算即可.【详解】解:因为终边上一点坐标为,所以,因为的终边逆时针旋转与的终边重合,所以故答案为:14、4【解析】利用向量共线定理即可得出【详解】∵∥,∴=8,解得,其中,故答案为【点睛】本题考查了向量共线定理,考查了向量的坐标运算,属于基础题15、6【解析】先求圆心到直线的距离,再根据弦心距、半径、弦长的几何关系求|AB|.【详解】因为圆心C(3,1)到直线的距离,所以故答案为:616、3【解析】三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),,(2)【解析】(1)直接利用三角函数的定义依次计算得到答案.(2)根据诱导公式化简得到原式等于,计算得到答案.【小问1详解】,,解得.故,.【小问2详解】.18、(1)(2)函数图象见解析,单调递增区间为和,单调递减区间为;【解析】(1)依题意是上的奇函数,即可得到,再设,根据时的解析式及奇函数的性质计算可得;(2)由(1)中的解析式画出函数图形,结合图象得到函数的单调区间;【小问1详解】解:的图象关于原点对称,是奇函数,又的定义域为,,解得设,则,当时,,,所以;【小问2详解】解:由(1)可得的图象如下所示:由图象可知的单调递增区间为和,单调递减区间为;19、(Ⅰ),;(Ⅱ).【解析】(Ⅰ)利用三角恒等变换思想化简函数的解析式为,求得函数在上的单调递增区间,与取交集可得出结果;(Ⅱ)由可得出,利用同角三角函数的基本关系可求得的值,利用两角和的正弦公式可求得的值详解】(Ⅰ)令,,得,令,得;令,得.因此,函数在区间上的单调递增区间为,;(Ⅱ)由,得,,又,,因此,【点睛】本题考查正弦型函数的单调区间的求解,同时也考查了利用两角和的正弦公式求值,考查计算能力,属于中等题.20、(1)45°;(2)【解析】(1),则异面直线与所成的角就是与所成的角,从而求得(2)根据三棱锥的体积进行求解即可【详解】解:(1)∵,∴异面直线与所成的角就是与所成的角,即故异面直线与所成的角为45°(2)三棱锥的体积【点睛】本题主要考查了直线与平面之间的位置关系,以及几何体的体积和异面直线所成角等有关知识,考查数形结合、化归与转化的数学思想方法,空间想象能力、运算能力和推理论证能力,属于基础题21、(1)(2)(3)【解析】(Ⅰ)根据图象过点,代入函数解析式求出k的值即可;(Ⅱ)令,则命题等价于,根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年学校语文教师工作计划例文(三篇)
- 2024年小学安全教育计划范例(二篇)
- 2024年土建工程师岗位的工作职责说明例文(七篇)
- 2024年学校公务用车管理制度模版(三篇)
- 2024年小学教研活动总结标准范本(二篇)
- 2024年小学图书借阅制度模版(五篇)
- 2024年固定资产借款合同范本(二篇)
- 2024年单位年终工作总结(四篇)
- 2024年安全生产工作总结简单版(四篇)
- 2024年工程预算员工作职责(四篇)
- 配网工程管理流程及注意事项
- 电动车证明模板
- 美标钢材理论重量整理(槽钢、角钢、H型钢-W型钢、T型钢)
- 管桩打桩规范及要求
- 光纤传感器的八大优点和分布式光纤传感器的六大特点
- 机关工作人员考勤表Excel模板
- 日照市重点支柱产业情况
- 学生课堂表现评价量表(共8页)
- 未就业证明模板村委会
- 《2021国标暖通图集资料》14K117-3 锥形风帽
- 公司固定动火区标识牌---副本
评论
0/150
提交评论