版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
21世纪教育网精品试卷·第2页(共2页)备考2019中考数学高频考点剖析专题三十四动态几何之面积问题考点扫描☆聚焦中考动态几何中的面积问题,是每年中考的必考内容之一,考查的知识点包括点动、线动和面动三大类,总体来看,难度系数偏高,以选择填空为主,有的地市重点考查解析题。解析题主要以计算为主。结合2018年全国各地中考的实例,我们从四方面进行动态几何之面积问题的探讨:(1)静态面积问题;(2)点动形成的动态面积问题;(3)线动形成的动态面积问题;(4)面动形成的动态面积问题。考点剖析☆典型例题例1(2018·山东临沂·9分)如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D,OB与⊙O相交于点E.(1)求证:AC是⊙O的切线;(2)若BD=,BE=1.求阴影部分的面积.【分析】(1)连接OD,作OF⊥AC于F,如图,利用等腰三角形的性质得AO⊥BC,AO平分∠BAC,再根据切线的性质得OD⊥AB,然后利用角平分线的性质得到OF=OD,从而根据切线的判定定理得到结论;(2)设⊙O的半径为r,则OD=OE=r,利用勾股定理得到r2+()2=(r+1)2,解得r=1,则OD=1,OB=2,利用含30度的直角三角三边的关系得到∠B=30°,∠BOD=60°,则∠AOD=30°,于是可计算出AD=OD=,然后根据扇形的面积公式,利用阴影部分的面积=2S△AOD﹣S扇形DOF进行计算.【解答】(1)证明:连接OD,作OF⊥AC于F,如图,∵△ABC为等腰三角形,O是底边BC的中点,∴AO⊥BC,AO平分∠BAC,∵AB与⊙O相切于点D,∴OD⊥AB,而OF⊥AC,∴OF=OD,∴AC是⊙O的切线;(2)解:在Rt△BOD中,设⊙O的半径为r,则OD=OE=r,∴r2+()2=(r+1)2,解得r=1,∴OD=1,OB=2,∴∠B=30°,∠BOD=60°,∴∠AOD=30°,在Rt△AOD中,AD=OD=,∴阴影部分的面积=2S△AOD﹣S扇形DOF=2××1×﹣=﹣.【点评】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线.圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了等腰三角形的性质.例2(2018年江苏省南京市)结果如此巧合!下面是小颖对一道题目的解答.题目:如图,Rt△ABC的内切圆与斜边AB相切于点D,AD=3,BD=4,求△ABC的面积.解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x.根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x.根据勾股定理,得(x+3)2+(x+4)2=(3+4)2.整理,得x2+7x=12.所以S△ABC=AC•BC=(x+3)(x+4)=(x2+7x+12)=×(12+12)=12.小颖发现12恰好就是3×4,即△ABC的面积等于AD与BD的积.这仅仅是巧合吗?请你帮她完成下面的探索.已知:△ABC的内切圆与AB相切于点D,AD=m,BD=n.可以一般化吗?(1)若∠C=90°,求证:△ABC的面积等于mn.倒过来思考呢?(2)若AC•BC=2mn,求证∠C=90°.改变一下条件……(3)若∠C=60°,用m、n表示△ABC的面积.【分析】(1)由切线长知AE=AD=m、BF=BD=n、CF=CE=x,根据勾股定理得(x+m)2+(x+n)2=(m+n)2,即x2+(m+n)x=mn,再利用三角形的面积公式计算可得;(2)由由AC•BC=2mn得(x+m)(x+n)=2mn,即x2+(m+n)x=mn,再利用勾股定理逆定理求证即可;(3)作AG⊥BC,由三角函数得AG=AC•sin60°=(x+m),CG=AC•cos60°=(x+m)、BG=BC﹣CG=(x+n)﹣(x+m),在Rt△ABG中,根据勾股定理可得x2+(m+n)x=3mn,最后利用三角形的面积公式计算可得.【解答】解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,根据切线长定理,得:AE=AD=m、BF=BD=n、CF=CE=x,(1)如图1,在Rt△ABC中,根据勾股定理,得:(x+m)2+(x+n)2=(m+n)2,整理,得:x2+(m+n)x=mn,所以S△ABC=AC•BC=(x+m)(x+n)=[x2+(m+n)x+mn]=(mn+mn)=mn,(2)由AC•BC=2mn,得:(x+m)(x+n)=2mn,整理,得:x2+(m+n)x=mn,∴AC2+BC2=(x+m)2+(x+n)2=2[x2+(m+n)x]+m2+n2=2mn+m2+n2=(m+n)2=AB2,根据勾股定理逆定理可得∠C=90°;(3)如图2,过点A作AG⊥BC于点G,在Rt△ACG中,AG=AC•sin60°=(x+m),CG=AC•cos60°=(x+m),∴BG=BC﹣CG=(x+n)﹣(x+m),在Rt△ABG中,根据勾股定理可得:[(x+m)]2+[(x+n)﹣(x+m)]2=(m+n)2,整理,得:x2+(m+n)x=3mn,∴S△ABC=BC•AG=×(x+n)•(x+m)=[x2+(m+n)x+mn]=×(3mn+mn)=mn.【点评】本题主要考查圆的综合问题,解题的关键是掌握切线长定理的运用、三角函数的应用及勾股定理及其逆定理等知识点.例3(2018•四川成都•9分)在中,,,,过点作直线,将绕点顺时针得到(点,的对应点分别为,)射线,分别交直线于点,.(1)如图1,当与重合时,求的度数;(2)如图2,设与的交点为,当为的中点时,求线段的长;(3)在旋转过程时,当点分别在,的延长线上时,试探究四边形的面积是否存在最小值.若存在,求出四边形的最小面积;若不存在,请说明理由.【答案】(1)由旋转的性质得:.,,,,,.(2)为的中点,.由旋转的性质得:,.,.,,.(3),最小,即最小,.法一:(几何法)取中点,则..当最小时,最小,,即与重合时,最小.,,,.法二:(代数法)设,.由射影定理得:,当最小,即最小,.当时,“”成立,.【考点】三角形的面积,解直角三角形,旋转的性质【解析】【分析】(1)根据旋转的性质可得出,根据已知易证m∥AC,得出∠A'BC是直角,利用特殊角的三角函数值,可求出∠A'CB的度数,就可求出结果。(2)根据中点的定义及性质的性质,可证得∠A=∠A'CM,利用解直角三角形求出PB和BQ的长,再根据PQ=PB+BQ,计算即可解答。(3)根据已知得出四边形FA'B'Q的面积最小,则△PCQ的面积最小,可表示出△PCQ的面积,利用几何法取中点,则,得出PQ=2CG,当CG最小时,则PQ最小根据垂线段最短,求出CG的值,从而可求出PQ的最小值,就可求出四边形FA'B'Q面积的最小值。也可以利用代数式解答此题。例4(2018·湖南省常德·10分)如图,已知二次函数的图象过点O(0,0).A(8,4),与x轴交于另一点B,且对称轴是直线x=3.(1)求该二次函数的解析式;(2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求M的坐标;(3)P是x轴上的点,过P作PQ⊥x轴与抛物线交于Q.过A作AC⊥x轴于C,当以O,P,Q为顶点的三角形与以O,A,C为顶点的三角形相似时,求P点的坐标.【分析】(1)先利用抛物线的对称性确定B(6,0),然后设交点式求抛物线解析式;(2)设M(t,0),先其求出直线OA的解析式为y=x,直线AB的解析式为y=2x﹣12,直线MN的解析式为y=2x﹣2t,再通过解方程组得N(t,t),接着利用三角形面积公式,利用S△AMN=S△AOM﹣S△NOM得到S△AMN=•4•t﹣•t•t,然后根据二次函数的性质解决问题;(3)设Q(m,m2﹣m),根据相似三角形的判定方法,当=时,△PQO∽△COA,则|m2﹣m|=2|m|;当=时,△PQO∽△CAO,则|m2﹣m|=|m|,然后分别解关于m的绝对值方程可得到对应的P点坐标.【解答】解:(1)∵抛物线过原点,对称轴是直线x=3,∴B点坐标为(6,0),设抛物线解析式为y=ax(x﹣6),把A(8,4)代入得a•8•2=4,解得a=,∴抛物线解析式为y=x(x﹣6),即y=x2﹣x;(2)设M(t,0),易得直线OA的解析式为y=x,设直线AB的解析式为y=kx+b,把B(6,0),A(8,4)代入得,解得,∴直线AB的解析式为y=2x﹣12,∵MN∥AB,∴设直线MN的解析式为y=2x+n,把M(t,0)代入得2t+n=0,解得n=﹣2t,∴直线MN的解析式为y=2x﹣2t,解方程组得,则N(t,t),∴S△AMN=S△AOM﹣S△NOM=•4•t﹣•t•t=﹣t2+2t=﹣(t﹣3)2+3,当t=3时,S△AMN有最大值3,此时M点坐标为(3,0);(3)设Q(m,m2﹣m),∵∠OPQ=∠ACO,∴当=时,△PQO∽△COA,即=,∴PQ=2PO,即|m2﹣m|=2|m|,解方程m2﹣m=2m得m1=0(舍去),m2=14,此时P点坐标为(14,28);解方程m2﹣m=﹣2m得m1=0(舍去),m2=﹣2,此时P点坐标为(﹣2,4);∴当=时,△PQO∽△CAO,即=,∴PQ=PO,即|m2﹣m|=|m|,解方程m2﹣m=m得m1=0(舍去),m2=8(舍去),解方程m2﹣m=﹣m得m1=0(舍去),m2=2,此时P点坐标为(2,﹣1);综上所述,P点坐标为(14,28)或(﹣2,4)或(2,﹣1).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;灵活运用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题.考点过关☆专项突破类型一静态面积问题;1.(2018·辽宁省抚顺市)(3.00分)如图,AB是⊙O的直径,CD是弦,∠BCD=30°,OA=2,则阴影部分的面积是()A. B. C.π D.2π【分析】根据圆周角定理可以求得∠BOD的度数,然后根据扇形面积公式即可解答本题.【解答】解:∵∠BCD=30°,∴∠BOD=60°,∵AB是⊙O的直径,CD是弦,OA=2,∴阴影部分的面积是:=,故选:B.【点评】本题考查扇形面积的计算、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.2.(2018·重庆市B卷)(4.00分)如图,在边长为4的正方形ABCD中,以点B为圆心,以AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是8﹣2π(结果保留π)【分析】根据S阴=S△ABD﹣S扇形BAE计算即可;【解答】解:S阴=S△ABD﹣S扇形BAE=×4×4﹣=8﹣2π,故答案为8﹣2π.【点评】本题考查扇形的面积的计算,正方形的性质等知识,解题的关键是学会用分割法求阴影部分面积.3.(2018·四川省攀枝花)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC.AC交于点D.E,过点D作DF⊥AC于点F.(1)若⊙O的半径为3,∠CDF=15°,求阴影部分的面积;(2)求证:DF是⊙O的切线;(3)求证:∠EDF=∠DAC.(1)解:连接OE,过O作OM⊥AC于M,则∠AMO=90°.∵DF⊥AC,∴∠DFC=90°.∵∠FDC=15°,∴∠C=180°﹣90°﹣15°=75°.∵AB=AC,∴∠ABC=∠C=75°,∴∠BAC=180°﹣∠ABC∠C=30°,∴OM=OA==,AM=OM=.∵OA=OE,OM⊥AC,∴AE=2AM=3,∴∠BAC=∠AEO=30°,∴∠AOE=180°﹣30°﹣30°=120°,∴阴影部分的面积S=S扇形AOE﹣S△AOE=﹣=3π﹣;(2)证明:连接OD,∵AB=AC,OB=OD,∴∠ABC=∠C,∠ABC=∠ODB,∴∠ODB=∠C,∴AC∥OD.∵DF⊥AC,∴DF⊥OD.∵OD过O,∴DF是⊙O的切线;(3)证明:连接BE,∵AB为⊙O的直径,∴∠AEB=90°,∴BE⊥AC.∵DF⊥AC,∴BE∥DF,∴∠FDC=∠EBC.∵∠EBC=∠DAC,∴∠FDC=∠DAC.∵A.B.D.E四点共圆,∴∠DEF=∠ABC.∵∠ABC=∠C,∴∠DEC=∠C.∵DF⊥AC,∴∠EDF=∠FDC,∴∠EDF=∠DAC.4.(2018·云南省曲靖)如图,AB为⊙O的直径,点C为⊙O上一点,将弧BC沿直线BC翻折,使弧BC的中点D恰好与圆心O重合,连接OC,CD,BD,过点C的切线与线段BA的延长线交于点P,连接AD,在PB的另一侧作∠MPB=∠ADC.(1)判断PM与⊙O的位置关系,并说明理由;(2)若PC=,求四边形OCDB的面积.【解答】解:(1)PM与⊙O相切.理由如下:连接DO并延长交PM于E,如图,∵弧BC沿直线BC翻折,使弧BC的中点D恰好与圆心O重合,∴OC=DC,BO=BD,∴OC=DC=BO=BD,∴四边形OBDC为菱形,∴OD⊥BC,∴△OCD和△OBD都是等边三角形,∴∠COD=∠BOD=60°,∴∠COP=∠EOP=60°,∵∠MPB=∠ADC,而∠ADC=∠ABC,∴∠ABC=∠MPB,∴PM∥BC,∴OE⊥PM,∴OE=OP,∵PC为⊙O的切线,∴OC⊥PC,∴OC=OP,∴OE=OC,而OE⊥PC,∴PM是⊙O的切线;(2)在Rt△OPC中,OC=PC=×=1,∴四边形OCDB的面积=2S△OCD=2××12=.类型二点动形成的动态面积问题;1.(2018·山东潍坊·3分)如图,菱形ABCD的边长是4厘米,∠B=60°,动点P以1厘米秒的速度自A点出发沿AB方向运动至B点停止,动点Q以2厘米/秒的速度自B点出发沿折线BCD运动至D点停止.若点P、Q同时出发运动了t秒,记△BPQ的面积为S厘米2,下面图象中能表示S与t之间的函数关系的是()A. B. C. D.【分析】应根据0≤t<2和2≤t<4两种情况进行讨论.把t当作已知数值,就可以求出S,从而得到函数的解析式,进一步即可求解.【解答】解:当0≤t<2时,S=2t××(4﹣t)=﹣t2+4t;当2≤t<4时,S=4××(4﹣t)=﹣2t+8;只有选项D的图形符合.故选:D.【点评】本题主要考查了动点问题的函数图象,利用图形的关系求函数的解析式,注意数形结合是解决本题的关键.2.(2018·湖北省孝感·3分)如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣l,1),点B在x轴正半轴上,点D在第三象限的双曲线y=上,过点C作CE∥x轴交双曲线于点E,连接BE,则△BCE的面积为7.【分析】作辅助线,构建全等三角形:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,证明△AGD≌△DHC≌△CMB,根据点D的坐标表示:AG=DH=﹣x﹣1,由DG=BM,列方程可得x的值,表示D和E的坐标,根据三角形面积公式可得结论.【解答】解:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,设D(x,),∵四边形ABCD是正方形,∴AD=CD=BC,∠ADC=∠DCB=90°,易得△AGD≌△DHC≌△CMB,∴AG=DH=﹣x﹣1,∴DG=BM,∴1﹣=﹣1﹣x﹣,x=﹣2,∴D(﹣2,﹣3),CH=DG=BM=1﹣=4,∵AG=DH=﹣1﹣x=1,∴点E的纵坐标为﹣4,当y=﹣4时,x=﹣,∴E(﹣,﹣4),∴EH=2﹣=,∴CE=CH﹣HE=4﹣=,∴S△CEB=CE•BM=××4=7;故答案为:7.【点评】本题考查正方形的性质、全等三角形的判定和性质、反比例函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题,属于中考填空题的压轴题.3.(2018·山东泰安·3分)如图,在△ABC中,AC=6,BC=10,tanC=,点D是AC边上的动点(不与点C重合),过D作DE⊥BC,垂足为E,点F是BD的中点,连接EF,设CD=x,△DEF的面积为S,则S与x之间的函数关系式为S=x2.【分析】可在直角三角形CED中,根据DE、CE的长,求出△BED的面积即可解决问题.【解答】解:(1)在Rt△CDE中,tanC=,CD=x∴DE=x,CE=x,∴BE=10﹣x,∴S△BED=×(10﹣x)•x=﹣x2+3x.∵DF=BF,∴S=S△BED=x2,故答案为S=x2.【点评】本题考查解直角三角形,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.类型三线动形成的动态面积问题;1.(2017张家界)如图,在正方形ABCD中,AD=2,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为6﹣10.【考点】R2:旋转的性质;LE:正方形的性质.【分析】根据旋转的想知道的PB=BC=AB,∠PBC=30°,推出△ABP是等边三角形,得到∠BAP=60°,AP=AB=2,解直角三角形得到CE=2﹣2,PE=4﹣2,过P作PF⊥CD于F,于是得到结论.【解答】解:∵四边形ABCD是正方形,∴∠ABC=90°,∵把边BC绕点B逆时针旋转30°得到线段BP,∴PB=BC=AB,∠PBC=30°,∴∠ABP=60°,∴△ABP是等边三角形,∴∠BAP=60°,AP=AB=2,∵AD=2,∴AE=4,DE=2,∴CE=2﹣2,PE=4﹣2,过P作PF⊥CD于F,∴PF=PE=2﹣3,∴三角形PCE的面积=CE•PF=×(2﹣2)×(4﹣2)=6﹣10,故答案为:6﹣10.2.(2017•新疆)如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s的速度向点B、C、D、A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为3s时,四边形EFGH的面积最小,其最小值是18cm2.【考点】H7:二次函数的最值;LE:正方形的性质.【分析】设运动时间为t(0≤t≤6),则AE=t,AH=6﹣t,由四边形EFGH的面积=正方形ABCD的面积﹣4个△AEH的面积,即可得出S四边形EFGH关于t的函数关系式,配方后即可得出结论.【解答】解:设运动时间为t(0≤t≤6),则AE=t,AH=6﹣t,根据题意得:S四边形EFGH=S正方形ABCD﹣4S△AEH=6×6﹣4×t(6﹣t)=2t2﹣12t+36=2(t﹣3)2+18,∴当t=3时,四边形EFGH的面积取最小值,最小值为18.故答案为:3;18【点评】本题考查了二次函数的最值、三角形以及正方形的面积,通过分割图形求面积法找出S四边形EFGH关于t的函数关系式是解题的关键.3.(2018年湖北省宜昌市12分)如图,在平面直角坐标系中,矩形OADB的顶点A,B的坐标分别为A(﹣6,0),B(0,4).过点C(﹣6,1)的双曲线y=(k≠0)与矩形OADB的边BD交于点E.(1)填空:OA=6,k=﹣6,点E的坐标为(﹣,4);(2)当1≤t≤6时,经过点M(t﹣1,﹣t2+5t﹣)与点N(﹣t﹣3,﹣t2+3t﹣)的直线交y轴于点F,点P是过M,N两点的抛物线y=﹣x2+bx+c的顶点.①当点P在双曲线y=上时,求证:直线MN与双曲线y=没有公共点;②当抛物线y=﹣x2+bx+c与矩形OADB有且只有三个公共点,求t的值;③当点F和点P随着t的变化同时向上运动时,求t的取值范围,并求在运动过程中直线MN在四边形OAEB中扫过的面积.【分析】(1)根据题意将先关数据带入(2)①用t表示直线MN解析式,及b,c,得到P点坐标带入双曲线y=解析式,证明关于t的方程无解即可;②根据抛物线开口和对称轴,分别讨论抛物线过点B和在BD上时的情况;③由②中部分结果,用t表示F、P点的纵坐标,求出t的取值范围及直线MN在四边形OAEB中所过的面积.【解答】解:(1)∵A点坐标为(﹣6,0)∴OA=6∵过点C(﹣6,1)的双曲线y=∴k=﹣6y=4时,x=﹣∴点E的坐标为(﹣,4)故答案为:6,﹣6,(﹣,4)(2)①设直线MN解析式为:y1=k1x+b1由题意得:解得∵抛物线y=﹣过点M、N∴解得∴抛物线解析式为:y=﹣x2﹣x+5t﹣2∴顶点P坐标为(﹣1,5t﹣)∵P在双曲线y=﹣上∴(5t﹣)×(﹣1)=﹣6∴t=此时直线MN解析式为:联立∴8x2+35x+49=0∵△=352﹣4×8×48=1225﹣1536<0∴直线MN与双曲线y=﹣没有公共点.②当抛物线过点B,此时抛物线y=﹣x2+bx+c与矩形OADB有且只有三个公共点∴4=5t﹣2,得t=当抛物线在线段DB上,此时抛物线与矩形OADB有且只有三个公共点∴,得t=∴t=或t=③∵点P的坐标为(﹣1,5t﹣)∴yP=5t﹣当1≤t≤6时,yP随t的增大而增大此时,点P在直线x=﹣1上向上运动∵点F的坐标为(0,﹣)∴yF=﹣∴当1≤t≤4时,随者yF随t的增大而增大此时,随着t的增大,点F在y轴上向上运动∴1≤t≤4当t=1时,直线MN:y=x+3与x轴交于点G(﹣3,0),与y轴交于点H(0,3)当t=4﹣时,直线MN过点A.当1≤t≤4时,直线MN在四边形AEBO中扫过的面积为S=【点评】本题为二次函数与反比例函数综合题,考查了数形结合思想和分类讨论的数学思想.解题过程中,应注意充分利用字母t表示相关点坐标.4.(2017江苏徐州)如图①,菱形ABCD中,AB=5cm,动点P从点B出发,沿折线BC﹣CD﹣DA运动到点A停止,动点Q从点A出发,沿线段AB运动到点B停止,它们运动的速度相同,设点P出发xs时,△BPQ的面积为ycm2,已知y与x之间的函数关系如图②所示,其中OM,MN为线段,曲线NK为抛物线的一部分,请根据图中的信息,解答下列问题:(1)当1<x<2时,△BPQ的面积不变(填“变”或“不变”);(2)分别求出线段OM,曲线NK所对应的函数表达式;(3)当x为何值时,△BPQ的面积是5cm2?【考点】LO:四边形综合题.【分析】(1)根据函数图象即可得到结论;(2)设线段OM的函数表达式为y=kx,把(1,10)即可得到线段OM的函数表达式为y=10x;设曲线NK所对应的函数表达式y=a(x﹣3)2,把(2,10)代入得根据得到曲线NK所对应的函数表达式y=10(x﹣3)2;(3)把y=5代入y=10x或y=10(x﹣3)2即可得到结论.【解答】解:(1)由函数图象知,当1<x<2时,△BPQ的面积始终等于10,∴当1<x<2时,△BPQ的面积不变;故答案为:不变;(2)设线段OM的函数表达式为y=kx,把(1,10)代入得,k=10,∴线段OM的函数表达式为y=10x;设曲线NK所对应的函数表达式y=a(x﹣3)2,把(2,10)代入得,10=a(2﹣3)2,∴a=10,∴曲线NK所对应的函数表达式y=10(x﹣3)2;(3)把y=5代入y=10x得,x=,把y=5代入y=10(x﹣3)2得,5=10(x﹣3)2,∴x=3±,∵3+>3,∴x=3﹣,∴当x=或3﹣时,△BPQ的面积是5cm2.类型四面动形成的动态面积问题。1.(2018·辽宁省抚顺市)(14.00分)如图,抛物线y=﹣x2+bx+c和直线y=x+1交于A,B两点,点A在x轴上,点B在直线x=3上,直线x=3与x轴交于点C(1)求抛物线的解析式;(2)点P从点A出发,以每秒个单位长度的速度沿线段AB向点B运动,点Q从点C出发,以每秒2个单位长度的速度沿线段CA向点A运动,点P,Q同时出发,当其中一点到达终点时,另一个点也随之停止运动,设运动时间为t秒(t>0).以PQ为边作矩形PQNM,使点N在直线x=3上.①当t为何值时,矩形PQNM的面积最小?并求出最小面积;②直接写出当t为何值时,恰好有矩形PQNM的顶点落在抛物线上.【分析】(1)利用待定系数法即可;(2)①分别用t表示PE.PQ、EQ,用△PQE∽△QNC表示NC及QN,列出矩形PQNM面积与t的函数关系式问题可解;②由①利用线段中点坐标分别等于两个端点横纵坐标平均分的数量关系,表示点M坐标,分别讨论M、N、Q在抛物线上时的情况,并分别求出t值.【解答】解:(1)由已知,B点横坐标为3∵A.B在y=x+1上∴A(﹣1,0),B(3,4)把A(﹣1,0),B(3,4)代入y=﹣x2+bx+c得解得∴抛物线解析式为y=﹣x2+3x+4(2)①过点P作PE⊥x轴于点E∵直线y=x+1与x轴夹角为45°,P点速度为每秒个单位长度∴t秒时点E坐标为(﹣1+t,0),Q点坐标为(3﹣2t,0)∴EQ=4﹣3t,PE=t∵∠PQE+∠NQC=90°∠PQE+∠EPQ=90°∴∠EPQ=∠NQC∴△PQE∽△QNC∴∴矩形PQNM的面积S=PQ•NQ=2PQ2∵PQ2=PE2+EQ2∴S=2()2=20t2﹣36t+18当t=时,S最小=20×()2﹣36×+18=②由①点C坐标为(3﹣2t,0)P(﹣1+t,t)∴△PQE∽△QNC,可得NC=2QO=8﹣6t∴N点坐标为(3,8﹣6t)由矩形对角线互相平分∴点M坐标为(3t﹣1,8﹣5t)当M在抛物线上时8﹣5t=﹣(3t﹣1)2+3(3t﹣1)+4解得t=当点Q到A时,Q在抛物线上,此时t=2当N在抛物线上时,8﹣6t=4∴t=综上所述当t=、或2时,矩形PQNM的顶点落在抛物线上.【点评】本题是代数几何综合题,考查了二次函数、一次函数、三角形相似和矩形的有关性质,解答时应注意数形结合和分类讨论的数学思想.2.(2018·新疆生产建设兵团·13分)如图,在平面直角坐标系中,抛物线y=x2﹣x﹣4与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.(1)求点A,B,C的坐标;(2)点P从A点出发,在线段AB上以每秒2个单位长度的速度向B点运动,同时,点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,当其中一个点到达终点时,另一个点也停止运动.设运动时间为t秒,求运动时间t为多少秒时,△PBQ的面积S最大,并求出其最大面积;(3)在(2)的条件下,当△PBQ面积最大时,在BC下方的抛物线上是否存在点M,使△BMC的面积是△PBQ面积的1.6倍?若存在,求点M的坐标;若不存在,请说明理由.【分析】(1)代入x=0可求出点C的纵坐标,代入y=0可求出点A、B的横坐标,此题得解;(2)根据点B、C的坐标,利用待定系数法可求出直线BC的解析式,过点Q作QE∥y轴,交x轴于点E,当运动时间为t秒时,点P的坐标为(2t﹣2,0),点Q的坐标为(3﹣t,﹣t),进而可得出PB、QE的长度,利用三角形的面积公式可得出S△PBQ关于t的函数关系式,利用二次函数的性质即可解决最值问题;(3)根据(2)的结论找出点P、Q的坐标,假设存在,设点M的坐标为(m,m2﹣m﹣4),则点F的坐标为(m,m﹣4),进而可得出MF的长度,利用三角形的面积结合△BMC的面积是△PBQ面积的1.6倍,可得出关于m的一元二次方程,解之即可得出结论.【解答】解:(1)当x=0时,y=x2﹣x﹣4=﹣4,∴点C的坐标为(0,﹣4);当y=0时,有x2﹣x﹣4=0,解得:x1=﹣2,x2=3,∴点A的坐标为(﹣2,0),点B的坐标为(3,0).(2)设直线BC的解析式为y=kx+b(k≠0),将B(3,0)、C(0,﹣4)代入y=kx+b,,解得:,∴直线BC的解析式为y=x﹣4.过点Q作QE∥y轴,交x轴于点E,如图1所示,当运动时间为t秒时,点P的坐标为(2t﹣2,0),点Q的坐标为(3﹣t,﹣t),∴PB=3﹣(2t﹣2)=5﹣2t,QE=t,∴S△PBQ=PB•QE=﹣t2+2t=﹣(t﹣)2+.∵﹣<0,∴当t=时,△PBQ的面积取最大值,最大值为.(3)当△PBQ面积最大时,t=,此时点P的坐标为(,0),点Q的坐标为(,﹣1).假设存在,设点M的坐标为(m,m2﹣m﹣4),则点F的坐标为(m,m﹣4),∴MF=m﹣4﹣(m2﹣m﹣4)=﹣m2+2m,∴S△BMC=MF•OB=﹣m2+3m.∵△BMC的面积是△PBQ面积的1.6倍,∴﹣m2+3m=×1.6,即m2﹣3m+2=0,解得:m1=1,m2=2.∵0<m<3,∴在BC下方的抛物线上存在点M,使△BMC的面积是△PBQ面积的1.6倍,点M的坐标为(1,﹣4)或(2,﹣).【点评】本题考查了二次函数图象上点的坐标特征、二次函数的性质、二次(一次)函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)利用二次函数图象上点的坐标特征求出点A、B、C的坐标;(2)利用三角形的面积公式找出S△PBQ关于t的函数关系式;(3)利用三角形的面积结合△BMC的面积是△PBQ面积的1.6倍,找出关于m的一元二次方程.3.(2017浙江衢州)在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A点出发,以每秒1个单位
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年驾驶员培训合同:安全驾驶知识传授
- 2024印刷宣传册年度生产、印刷及后期加工合同3篇
- 2024年股票交易居间协议
- 2024年豪华KTV租赁合同样本3篇
- 2024年高端医疗服务外包合同
- 2025年度腻子产品绿色环保认证销售合同3篇
- 2024幼儿园教职工综合保障聘用合同示范文本3篇
- 2025产业园智慧园区建设与运营管理服务合同范本3篇
- 2025年度池塘水利工程设施建设与维护合同3篇
- 双重预防体系材料明细5篇范文
- 【大单元教学】Unit 8 单元整体教学设计
- 学生自主管理实施方案10篇
- 亚朵酒店管理手册
- 纪检机关查办案件分析报告
- 高一期末家长会课件
- 文化艺术中心行业技术创新及应用
- 2024年航空职业技能鉴定考试-航空乘务员危险品历年考试高频考点试题附带答案
- 精神病院设置可行性方案
- 2024版全文:中国2型糖尿病预防及治疗指南
- 《工程地质勘察 》课件
- 广东省(广州市)职业技能鉴定申请表-模板
评论
0/150
提交评论