专题16 函数几何问题(精练)-2019年中考数学高频考点突破全攻略(解析版)_第1页
专题16 函数几何问题(精练)-2019年中考数学高频考点突破全攻略(解析版)_第2页
专题16 函数几何问题(精练)-2019年中考数学高频考点突破全攻略(解析版)_第3页
专题16 函数几何问题(精练)-2019年中考数学高频考点突破全攻略(解析版)_第4页
专题16 函数几何问题(精练)-2019年中考数学高频考点突破全攻略(解析版)_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、选择题(10×3=30分)1.二次函数y=﹣x2+2x+3与x轴交于A、B两点,它的顶点为C,则△ABC的面积为()A.2 B.4 C.8 D.16【分析】此题容易,只要把坐标写出来,根据面积公式就可解决了.【解答】解:二次函数y=﹣x2+2x+3=﹣(x﹣3)(x+1)与x轴交于A、B两点,则可设A(﹣1,0)、B(3,0)根据顶点坐标公式x=﹣=1,则y=4⇒.故选:C.学科&网2.如图所示,在一个直角三角形的内部作一个长方形ABCD,其中AB和BC分别在两直角边上,设AB=xm,长方形的面积为ym2,要使长方形的面积最大,其边长x应为()A.m B.6m C.15m D.m【分析】本题考查二次函数最小(大)值的求法.思路是:长方形的面积=大三角形的面积﹣两个小三角形的面积.3.(2018·重庆市B卷)(4.00分)如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象同时经过顶点C,D.若点C的横坐标为5,BE=3DE,则k的值为()A. B.3 C. D.5【分析】由已知,可得菱形边长为5,设出点D坐标,即可用勾股定理构造方程,进而求出k值.【解答】解:过点D做DF⊥BC于F由已知,BC=5设OB=a则点D坐标为(1,a+3),点C坐标为(5,a)∵点D.C在双曲线上∴1×(a+3)=5a∴a=∴点C坐标为(5,)∴k=故选:C.4.如图17-3,在平面直角坐标系中,抛物线y=eq\f(1,2)x2经过平移得到抛物线y=eq\f(1,2)x2-2x,其对称轴与两段抛物线弧所围成的阴影部分的面积为(B)A.2B.4C.8 D.165.(2018•莱芜•3分)在平面直角坐标系中,已知△ABC为等腰直角三角形,CB=CA=5,点C(0,3),点B在x轴正半轴上,点A在第三象限,且在反比例函数y=的图象上,则k=()A.3 B.4 C.6 D.12【分析】如图,作AH⊥y轴于H.构造全等三角形即可解决问题;【解答】解:如图,作AH⊥y轴于H.∵CA=CB,∠AHC=∠BOC,∠ACH=∠CBO,∴△ACH≌△CBO,∴AH=OC,CH=OB,∵C(0,3),BC=5,∴OC=3,OB==4,∴CH=OB=4,AH=OC=3,∴OH=1,∴A(﹣3,﹣1),∵点A在y=上,∴k=3,故选:A.【点评】本题考查反比例函数的应用、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.6.(2018·辽宁省沈阳市)(3.00分)如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),当AB的值为()时,矩形土地ABCD的面积最大.A.150m B.160m C.155m D.145m【分析】根据题意可以用相应的代数式表示出矩形绿地的面积;即可解答本题.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,列出相应的函数关系式,利用二次函数的顶点式求函数的最值.7.如图,OABC是边长为1的正方形,OC与x轴正半轴的夹角为15°,点B在抛物线y=ax2(a<0)的图象上,则a的值为()A. B. C.﹣2 D.【分析】连接OB,过B作BD⊥x轴于D,若OC与x轴正半轴的夹角为15°,那么∠BOD=30°;在正方形OABC中,已知了边长,易求得对角线OB的长,进而可在Rt△OBD中求得BD、OD的值,也就得到了B点的坐标,然后将其代入抛物线的解析式中,即可求得待定系数a的值.代入抛物线的解析式中,得:()2a=﹣,解得a=﹣;故选:B.8.(2018·山东潍坊·3分)如图,菱形ABCD的边长是4厘米,∠B=60°,动点P以1厘米秒的速度自A点出发沿AB方向运动至B点停止,动点Q以2厘米/秒的速度自B点出发沿折线BCD运动至D点停止.若点P、Q同时出发运动了t秒,记△BPQ的面积为S厘米2,下面图象中能表示S与t之间的函数关系的是()A. B. C. D.9.(2018•安徽•4分)如图,直线都与直线l垂直,垂足分别为M,N,MN=1,正方形ABCD的边长为,对角线AC在直线l上,且点C位于点M处,将正方形ABCD沿l向右平移,直到点A与点N重合为止,记点C平移的距离为x,正方形ABCD的边位于之间分的长度和为y,则y关于x的函数图象大致为()A.B.C.D.【答案】A【详解】由正方形的性质,已知正方形ABCD的边长为,易得正方形的对角线AC=2,∠ACD=45°,如图,当0≤x≤1时,y=2,如图,当1<x≤2时,y=2m+2n=2(m+n)=2,如图,当2<x≤3时,y=2,综上,只有选项A符合,故选A.学科&网10.[2016·衢州]如图46-2,已知直线y=-eq\f(3,4)x+3分别交x轴,y轴于点A,B,P是抛物线y=-eq\f(1,2)x2+2x+5上一个动点,其横坐标是a,过点P且平行y轴的直线交直线y=-eq\f(3,4)x+3于点Q,则PQ=BQ时,a的值是().A.-1,4,4+2eq\r(5)eq\r(5).B.-1,4,4-2eq\r(5).C.-1,4.D.4+2eq\r(5)或4-2eq\r(5).二、填空题(6×4=24分).11.如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,则S△AOB=.【解答】解:根据题意得:S△AOB==2,故答案为:212.(2018•大庆)已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为.【分析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答.即OA=m,OB=m;在Rt△OAB中,AB=,过点O作OD⊥AB于D,∵S△ABO=OD•AB=OA•OB,∴OD•=×,∵m>0,解得OD=,由直线与圆的位置关系可知<6,解得m<.故答案为:m<.13.(2018·湖北省孝感·3分)如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣l,1),点B在x轴正半轴上,点D在第三象限的双曲线y=上,过点C作CE∥x轴交双曲线于点E,连接BE,则△BCE的面积为.【分析】作辅助线,构建全等三角形:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,证明△AGD≌△DHC≌△CMB,根据点D的坐标表示:AG=DH=﹣x﹣1,由DG=BM,列方程可得x的值,表示D和E的坐标,根据三角形面积公式可得结论.∵AG=DH=﹣1﹣x=1,∴点E的纵坐标为﹣4,当y=﹣4时,x=﹣,∴E(﹣,﹣4),∴EH=2﹣=,∴CE=CH﹣HE=4﹣=,∴S△CEB=CE•BM=××4=7;故答案为:7.14.(2018•湖北荆门•3分)如图,在平面直角坐标系xOy中,函数y=(k>0,x>0)的图象经过菱形OACD的顶点D和边AC的中点E,若菱形OACD的边长为3,则k的值为.【分析】过D作DQ⊥x轴于Q,过C作CM⊥x轴于M,过E作EF⊥x轴于F,设D点的坐标为(a,b),求出C、E的坐标,代入函数解析式,求出a,再根据勾股定理求出b,即可请求出答案.把D、E的坐标代入y=得:k=ab=(3+a)b,解得:a=2,在Rt△DQO中,由勾股定理得:a2+b2=32,即22+b2=9,解得:b=(负数舍去),∴k=ab=2,故答案为:2.15.(2018·山东潍坊·3分)如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D在x轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C′D′的位置,B'C′与CD相交于点M,则点M的坐标为.【分析】连接AM,由旋转性质知AD=AB′=1、∠BAB′=30°、∠B′AD=60°,证Rt△ADM≌Rt△AB′M得∠DAM=∠B′AD=30°,由DM=ADtan∠DAM可得答案.【解答】解:如图,连接AM,∴∠DAM=∠B′AM=∠B′AD=30°,∴DM=ADtan∠DAM=1×=,∴点M的坐标为(﹣1,),故答案为:(﹣1,).学科&网16.定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论:①当m=﹣3时,函数图象的顶点坐标是(,);②当m>0时,函数图象截x轴所得的线段长度大于;③当m<0时,函数在时,y随x的增大而减小;④当m≠0时,函数图象经过x轴上一个定点.其中正确的结论有.(只需填写序号)③当m<0时,y=2mx2+(1﹣m)x+(﹣1﹣m)是一个开口向下的抛物线,其对称轴是:,在对称轴的右边y随x的增大而减小.因为当m<0时,=﹣>,即对称轴在x=右边,因此函数在x=右边先递增到对称轴位置,再递减,此结论错误;④当x=1时,y=2mx2+(1﹣m)x+(﹣1﹣m)=2m+(1﹣m)+(﹣1﹣m)=0即对任意m,函数图象都经过点(1,0)那么同样的:当m=0时,函数图象都经过同一个点(1,0),当m≠0时,函数图象经过同一个点(1,0),故当m≠0时,函数图象经过x轴上一个定点此结论正确.根据上面的分析,①②④都是正确的,③是错误的.故答案为:①②④.三、解答题(共46分).17.(2018·重庆市B卷)(10.00分)如图,在平面直角坐标系中,直线l1:y=x与直线l2交点A的横坐标为2,将直线l1沿y轴向下平移4个单位长度,得到直线l3,直线l3与y轴交于点B,与直线l2交于点C,点C的纵坐标为﹣2.直线l2与y轴交于点D.(1)求直线l2的解析式;(2)求△BDC的面积.【解答】解:(1)把x=2代入y=x,得y=1,∴A的坐标为(2,1).∵将直线l1沿y轴向下平移4个单位长度,得到直线l3,∴直线l3的解析式为y=x﹣4,∴x=0时,y=﹣4,∴B(0,﹣4).将y=﹣2代入y=x﹣4,得x=4,∴点C的坐标为(4,﹣2).设直线l2的解析式为y=kx+b,∵直线l2过A(2,1)、C(4,﹣2),∴,解得,∴直线l2的解析式为y=﹣x+4;(2)∵y=﹣x+4,∴x=0时,y=4,∴D(0,4).∵B(0,﹣4),∴BD=8,∴△BDC的面积=×8×4=16.【点评】本题考查了一次函数图象与几何变换,待定系数法求直线的解析式,一次函数图象上点的坐标特征,三角形的面积,正确求出求出直线l2的解析式是解题的关键.18.(2018·湖北省武汉·10分)已知点A(a,m)在双曲线y=上且m<0,过点A作x轴的垂线,垂足为B.(1)如图1,当a=﹣2时,P(t,0)是x轴上的动点,将点B绕点P顺时针旋转90°至点C,①若t=1,直接写出点C的坐标;②若双曲线y=经过点C,求t的值.(2)如图2,将图1中的双曲线y=(x>0)沿y轴折叠得到双曲线y=﹣(x<0),将线段OA绕点O旋转,点A刚好落在双曲线y=﹣(x<0)上的点D(d,n)处,求m和n的数量关系.【解答】解:(1)①如图1﹣1中,由题意:B(﹣2,0),P(1,0),PB=PC=3,∴C(1,3).②图1﹣2中,由题意C(t,t+2),∵点C在y=上,∴t(t+2)=8,∴t=﹣4或2,(2)如图2中,∵A(a,m),∴D′(m,﹣a),即D′(m,n),∵D′在y=﹣上,∴mn=﹣8,19.(2018·山东潍坊·12分)如图1,抛物线y1=ax2﹣x+c与x轴交于点A和点B(1,0),与y轴交于点C(0,),抛物线y1的顶点为G,GM⊥x轴于点M.将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y2.(1)求抛物线y2的解析式;(2)如图2,在直线l上是否存在点T,使△TAC是等腰三角形?若存在,请求出所有点T的坐标;若不存在,请说明理由;(3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y2于点Q,点Q关于直线l的对称点为R,若以P,Q,R为顶点的三角形与△AMG全等,求直线PR的解析式.【解答】解:(1)由已知,c=,将B(1,0)代入,得:a﹣+=0,解得a=﹣,抛物线解析式为y1=,∵抛物线y1平移后得到y2,且顶点为B(1,0),∴y2=﹣(x﹣1)2,即y2=﹣.(2)存在,如图1:当TC=AC时,t2﹣=解得:t1=,t2=;当TA=AC时,t2+16=,无解;当TA=TC时,t2﹣=t2+16,解得t3=﹣;当点T坐标分别为(1,),(1,),(1,﹣)时,△TAC为等腰三角形.(3)如图2:②当点P在直线l右侧时,同理:PQ=m﹣1,QR=2m﹣2,则P(2,﹣),R(0,﹣),PQ解析式为:y=﹣;∴PR解析式为:y=﹣或y=﹣20.(2018•莱芜•12分)如图,抛物线y=ax2+bx+c经过A(﹣1,0),B(4,0),C(0,3)三点,D为直线BC上方抛物线上一动点,DE⊥BC于E.(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论