上海市延安初级中学2024届数学高一上期末复习检测模拟试题含解析_第1页
上海市延安初级中学2024届数学高一上期末复习检测模拟试题含解析_第2页
上海市延安初级中学2024届数学高一上期末复习检测模拟试题含解析_第3页
上海市延安初级中学2024届数学高一上期末复习检测模拟试题含解析_第4页
上海市延安初级中学2024届数学高一上期末复习检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市延安初级中学2024届数学高一上期末复习检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知,且α是第四象限角,那么的值是()A. B.-C.± D.2.定义域为R的函数,若关于的方程恰有5个不同的实数解,则=A.0 B.C. D.13.定义在上的偶函数的图象关于直线对称,当时,.若方程且根的个数大于3,则实数的取值范围为()A. B.C. D.4.已知偶函数在上单调递增,且,则满足的x的取值范围是()A. B.C. D.5.如果命题“使得”是假命题,那么实数的取值范围是()A. B.C. D.6.已知函数,则使成立的x的取值范围是()A. B.C. D.7.若,是第二象限角,则()A. B.3C.5 D.8.已知,则()A. B.C. D.的取值范围是9.以下给出的是计算的值的一个程序框图,其中判断框内应填入的条件是A.B.C.D.10.长方体中的8个顶点都在同一球面上,,,,则该球的表面积为()A. B.C. D.11.设全集,集合,,则=()A. B.{2,5}C.{2,4} D.{4,6}12.已知向量,且,则的值为()A.1 B.2C. D.3二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.若,则___________;14.若幂函数在区间上是减函数,则整数________15.已知是定义在R上的偶函数,且在区间上单调递增.若实数满足,则的取值范围是______.16.已知函数f(x)=若函数g(x)=f(x)-m有3个零点,则实数m的取值范围是_________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.设向量的夹角为且如果(1)证明:三点共线.(2)试确定实数的值,使的取值满足向量与向量垂直.18.一种药在病人血液中的含量不低于2克时,它才能起到有效治疗的作用,已知每服用且克的药剂,药剂在血液中的含量(克)随着时间(小时)变化的函数关系式近似为,其中(1)若病人一次服用9克的药剂,则有效治疗时间可达多少小时?(2)若病人第一次服用6克的药剂,6个小时后再服用3m克的药剂,要使接下来的2小时中能够持续有效治疗,试求m的最小值19.已知圆经过点,和直线相切.(1)求圆的方程;(2)若直线经过点,并且被圆截得的弦长为2,求直线的方程.20.如图所示,矩形ABCD中,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE.(1)求证:AE⊥平面BCE;(2)求证:AE∥平面BFD;(3)求三棱锥C-BGF的体积21.已知函数在一个周期内的图象如图所示(1)求的解析式;(2)直接写出在区间上的单调区间;(3)已知,都成立,直接写出一个满足题意的值22.已知函数(I)求函数图象的对称轴方程;(II)求函数的最小正周期和值域.

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】由诱导公式对已知式子和所求式子进行化简即可求解.【详解】根据诱导公式:,所以,,故.故选:B【点睛】诱导公式的记忆方法:奇变偶不变,符号看象限.2、C【解析】本题考查学生的推理能力、数形结合思想、函数方程思想、分类讨论等知识如图,由函数的图象可知,若关于的方程恰有5个不同的实数解,当时,方程只有一根为2;当时,方程有两不等实根(),从而方程,共有四个根,且这四个根关于直线对称分布,故其和为8.从而,,选C【点评】本题需要学生具备扎实的基本功,难度较大3、D【解析】由题设,可得解析式且为周期为4的函数,再将问题转化为与交点个数大于3个,讨论参数a判断交点个数,进而画出和的图象,应用数形结合法有符合题设,即可求范围.【详解】由题设,,即,所以是周期为4的函数,若,则,故,所以,要使且根的个数大于3,即与交点个数大于3个,又恒过,当时,在上,在上且在上递减,此时与只有一个交点,所以.综上,、的图象如下所示,要使交点个数大于3个,则,可得.故选:D【点睛】关键点点睛:根据已知条件分析出的周期性,并求出上的解析式,将问题转化为两个函数的交点个数问题,结合对数函数的性质分析a的范围,最后根据交点个数情况,应用数形结合进一步缩小参数的范围.4、B【解析】由题得函数在上单调递减,且,再根据函数的图象得到,解不等式即得解.【详解】因为偶函数在上单调递增,且,所以在上单调递减,且,因为,所以,所以.故选:B【点睛】本题主要考查函数的单调性和奇偶性的应用,意在考查学生对这些知识的理解掌握水平.5、B【解析】特称命题是假命题,则该命题的否定为全称命题且是真命题,然后根据即可求解.【详解】依题意,命题“使得”是假命题,则该命题的否定为“”,且是真命题;所以,.故选:B6、C【解析】考虑是偶函数,其单调性是关于y轴对称的,只要判断出时的单调性,利用对称关系即可.【详解】,是偶函数;当时,由于增函数,是增函数,所以是增函数,是关于y轴对称的,当时,是减函数,作图如下:欲使得,只需,两边取平方,得,解得;故选:C.7、C【解析】由题知,再根据诱导公式与半角公式计算即可得答案.【详解】解:因为,是第二象限角,所以,所以.故选:C8、B【解析】取判断A;由不等式的性质判断BC;由基本不等式判断D.【详解】当时,不成立,A错误.因为,所以,,B正确,C错误.当,时,,当且仅当时,等号成立,而,D错误故选:B9、A【解析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S的值【详解】程序运行过程中,各变量值如下表所示:第一圈:S=1,k=2,第二圈:S=1+,k=3,第三圈:S=1++,k=4,…依此类推,第十圈:S=1+,k=11退出循环其中判断框内应填入的条件是:k≤10,故选A【点睛】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误10、B【解析】根据题意,求得长方体的体对角线,即为该球的直径,再用球的表面积公式即可求得结果.【详解】由已知,该球是长方体的外接球,故,所以长方体的外接球半径,故外接球的表面积为.故选:.【点睛】本题考查长方体的外接球问题,涉及球表面积公式的使用,属综合基础题.11、D【解析】由补集、交集的定义,运算即可得解.【详解】因为,,所以,又,所以.故选:D.12、A【解析】由,转化为,结合数量积的坐标运算得出,然后将所求代数式化为,并在分子分母上同时除以,利用弦化切的思想求解【详解】由题意可得,即∴,故选A【点睛】本题考查垂直向量的坐标表示以及同角三角函数的基本关系,考查弦化切思想的应用,一般而言,弦化切思想应用于以下两方面:(1)弦的分式齐次式:当分式是关于角弦的次分式齐次式,分子分母同时除以,可以将分式由弦化为切;(2)弦的二次整式或二倍角的一次整式:先化为角的二次整式,然后除以化为弦的二次分式齐次式,并在分子分母中同时除以可以实现弦化切二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、1【解析】根据函数解析式,从里到外计算即可得解.【详解】,所以.故答案为:114、2【解析】由题意可得,求出的取值范围,从而可出整数的值【详解】因为幂函数在区间上是减函数,所以,解得,因为,所以,故答案为:215、【解析】由题意在上单调递减,又是偶函数,则不等式可化为,则,,解得16、(0,1)【解析】将方程的零点问题转化成函数的交点问题,作出函数的图象得到m的范围【详解】令g(x)=f(x)﹣m=0,得m=f(x)作出y=f(x)与y=m的图象,要使函数g(x)=f(x)﹣m有3个零点,则y=f(x)与y=m的图象有3个不同的交点,所以0<m<1,故答案为(0,1)【点睛】本题考查等价转化的能力、利用数形结合思想解题的思想方法是重点,要重视三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)见解析(2)【解析】(1)利用向量的加法求出,据此,结合,可以得到与的关系;(2)根据题意可得,再结合的夹角为,且,即可得到关于的方程,求解即可.试题解析:(1)即共线,有公共点三点共线.(2)且解得18、(1);(2)【解析】(1)分两段解不等式,解得结果即可得解;(2)求出当时,,再根据函数的单调性求出最小值为,解不等式可得解.【详解】(1)由题意,当可得,当时,,解得,此时;当时,,解得,此时,综上可得,所以病人一次服用9克的药剂,则有效治疗时间可达小时;(2)当时,,由,在均为减函数,可得在递减,即有,由,可得,可得m的最小值为【点睛】本题考查了分段函数的应用,正确求出分段函数解析式是解题关键,属于中档题.19、(1)(x-1)2+(y+2)2=2;(2)x=2或3x-4y-6=0【解析】(1)先求线段AB的垂直平分线方程为,设圆心的坐标为C(a,-a-1),由圆心到点的距离和到切线的距离相等求解即可;(2)由题知圆心C到直线l的距离,进而讨论直线斜率存在不存在两种情况求解即可.试题解析:(1)由题知,线段AB的中点M(1,-2),,线段AB的垂直平分线方程为,即,设圆心的坐标为C(a,-a-1),则,化简,得a2-2a+1=0,解得a=1.∴C(1,-2),半径r=|AC|==∴圆C的方程为(x-1)2+(y+2)2=2.(解二:可设原方程用待定系数法求解)(2)由题知圆心C到直线l的距离,①当直线l的斜率不存在时,直线l的方程为x=2,此时直线l被圆C截得的弦长为2,满足条件.②当直线l的斜率存在时,设直线l的方程为,由题意得,解得k=,∴直线l的方程为y=(x-2)综上所述,直线l的方程为x=2或3x-4y-6=0.点睛:直线与圆的位置关系常用处理方法:(1)直线与圆相切处理时要利用圆心与切点连线垂直,构建直角三角形,进而利用勾股定理可以建立等量关系;(2)直线与圆相交,利用垂径定理也可以构建直角三角形;(3)直线与圆相离时,当过圆心作直线垂线时长度最小20、(1)见详解;(2)见详解;(3)【解析】(1)证明∵AD⊥平面ABE,AD∥BC,∴BC⊥平面ABE,则AE⊥BC.又∵BF⊥平面ACE,则AE⊥BF,又BC∩BF=B,∴AE⊥平面BCE.(2)证明由题意可得G是AC的中点,连结FG,∵BF⊥平面ACE,∴CE⊥BF.而BC=BE,∴F是EC的中点,在△AEC中,FG∥AE,∴AE∥平面BFD.(3)∵AE∥FG.而AE⊥平面BCE,∴FG⊥平面BCF.∵G是AC中点,F是CE中点,∴FG∥AE且FG=AE=1.∴Rt△BCE中,BF=CE=CF=,∴S△CFB=××=1.∴VC-BGF=VG-BCF=·S△CFB·FG=.21、(1)(2)增区间为,减区间为(3)【解析】(1)根据图象确定周期可得出,再由图象过点求出即可得出解析式;(2)根据图象观察直接写出即可;(3)由知

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论