版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市民办和衷中学2023年数学九上期末复习检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,是的直径,点在上,,则的度数为()A. B. C. D.2.已知反比例函数的解析式为,则的取值范围是A. B. C. D.3.下面四个手机应用图标中是轴对称图形的是()A. B. C. D.4.二次函数图象如图,下列结论:①;②;③当时,;④;⑤若,且,.其中正确的结论的个数有()A.1 B.2 C.3 D.45.如图,若二次函数的图象的对称轴是直线,则下列四个结论中,错误的是().A. B. C. D.6.关于x的一元二次方程有实数根,则a的取值范围是A. B. C. D.7.如图,已知二次函数的图象与轴交于点(-1,0),与轴的交点在(0,-2)和(0,-1)之间(不包括这两点),对称轴为直线,下列结论不正确的是()A. B. C. D.8.如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为()A.30° B.40° C.45° D.50°9.常胜村2017年的人均收入为12000元,2019年的人均收入为15000元,求人均收入的年增长率.若设人均收入的年增长率为x,根据题意列方程为()A. B.C. D.10.如图,为线段上一点,与交与点,,交与点,交与点,则下列结论中错误的是()A. B. C. D.11.如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=40°,则∠OCB的度数为()A.40° B.50° C.65° D.75°12.下列命题是真命题的是()A.在同圆或等圆中,等弧所对的圆周角相等B.平分弦的直径垂直于弦C.在同圆或等圆中,等弦所对的圆周角相等D.三角形外心是三条角平分线的交点二、填空题(每题4分,共24分)13.如图,AB为半圆的直径,点D在半圆弧上,过点D作AB的平行线与过点A半圆的切线交于点C,点E在AB上,若DE垂直平分BC,则=______.14.把抛物线沿着轴向左平移3个单位得到的抛物线关系式是_________.15.方程x2﹣4x﹣6=0的两根和等于_____,两根积等于_____.16.九年级8班第一小组名同学在庆祝2020年新年之际,互送新年贺卡,表达同学间的真诚祝福,全组共送出贺卡30张,则的值是___.17.已知反比例函数的图象经过点P(a+1,4),则a=_________________.18.如图,在Rt△ABC中∠B=50°,将△ABC绕直角顶点A顺时针旋转得到△ADE.当点C在B1C1边所在直线上时旋转角∠BAB1=____度.三、解答题(共78分)19.(8分)先化简,再求值:,然后从0,1,2三个数中选择一个恰当的数代入求值.20.(8分)课本上有如下两个命题:命题1:圆的内接四边形的对角互补.命题2:如果一个四边形两组对角互补,那么该四边形的四个顶点在同一个圆上.请判断这两个命题的真、假?并选择其中一个说明理由.21.(8分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC、OD交于点E.(1)求证:OD∥BC;(2)若AC=2BC,求证:DA与⊙O相切.22.(10分)如图,AB是⊙O的直径,BC交⊙O于点D,E是的中点,连接AE交BC于点F,∠ACB=2∠EAB.(1)求证:AC是⊙O的切线;(2)若,,求BF的长.23.(10分)如图,是我市某大楼的高,在地面上点处测得楼顶的仰角为,沿方向前进米到达点,测得.现打算从大楼顶端点悬挂一幅庆祝建国周年的大型标语,若标语底端距地面,请你计算标语的长度应为多少?24.(10分)(1)解方程:(2)已知关于的方程无解,方程的一个根是.①求和的值;②求方程的另一个根.25.(12分)如图将矩形ABCD沿CM折叠,使点D落在AB边上的点E处,(1)求证:△AME∽△BEC.(2)若△EMC∽△AME,求AB与BC的数量关系.26.一次函数y=x+2与y=2x﹣m相交于点M(3,n),解不等式组,并将解集在数轴上表示出来.
参考答案一、选择题(每题4分,共48分)1、B【分析】连接AC,根据圆周角定理,分别求出∠ACB=90,∠ACD=20,即可求∠BCD的度数.【详解】连接AC,
∵AB为⊙O的直径,
∴∠ACB=90°,
∵∠AED=20°,
∴∠ACD=∠AED=20°,
∴∠BCD=∠ACB+∠ACD=90°+20°=110°,
故选:B.【点睛】本题考查的是圆周角定理:①直径所对的圆周角为直角;②在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.2、C【分析】根据反比例函数的定义可得|a|-2≠0,可解得.【详解】根据反比例函数的定义可得|a|-2≠0,可解得a≠±2.故选C.【点睛】本题考核知识点:反比例函数定义.解题关键点:理解反比例函数定义.3、D【分析】分别根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.【详解】A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.【点睛】本题考查的是轴对称图形,熟知轴对称图形是针对一个图形而言的,是一种具有特殊性质的图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合是解答此题的关键.4、C【分析】根据抛物线开口向下,对称轴在y轴右侧,以及抛物线与坐标轴的交点,结合图象即可作出判断.【详解】解:由题意得:a<0,c>0,=1>0,∴b>0,即abc<0,选项①错误;-b=2a,即2a+b=0,选项②正确;当x=1时,y=a+b+c为最大值,则当m≠1时,a+b+c>am2+bm+c,即当m≠1时,a+b>am2+bm,选项③正确;由图象知,当x=-1时,ax2+bx+c=a-b+c<0,选项④错误;∵ax12+bx1=ax22+bx2,∴ax12-ax22+bx1-bx2=0,(x1-x2)[a(x1+x2)+b]=0,而x1≠x2,∴a(x1+x2)+b=0,∴x1+x2=,所以⑤正确.所以②③⑤正确,共3项,故选:C.【点睛】此题考查了二次函数图象与系数的关系,解本题的关键二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.5、C【分析】根据对称轴是直线得出,观察图象得出,,进而可判断选项A,根据时,y值的大小与可判断选项C、D,根据时,y值的大小可判断选项B.【详解】由题意知,,即,由图象可知,,,∴,∴,选项A正确;当时,,选项D正确;∵,∴,选项C错误;当时,,选项B正确;故选C.【点睛】本题考查二次函数的图象与系数a,b,c的关系,学会取特殊点的方法是解本题的关键.6、A【解析】试题分析:根据一元二次方程的意义,可知a≠0,然后根据一元二次方程根的判别式,可由有实数根得△=b2-4ac=1-4a≥0,解得a≤,因此可知a的取值范围为a≤且a≠0.点睛:此题主要考查了一元二次方程根的判别式,解题关键是根据一元二次方程根的个数判断△=b2-4ac的值即可.注意:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的十数根;当△<0时,方程没有实数根.7、D【分析】根据二次函数的图象和性质、各项系数结合图象进行解答.【详解】∵(-1,0),对称轴为∴二次函数与x轴的另一个交点为将代入中,故A正确将代入中②①∴∵二次函数与轴的交点在(0,-2)和(0,-1)之间(不包括这两点)∴∴∴,故B正确;∵二次函数与轴的交点在(0,-2)和(0,-1)之间(不包括这两点)∴抛物线顶点纵坐标∵抛物线开口向上∴∴,故C正确∵二次函数与轴的交点在(0,-2)和(0,-1)之间(不包括这两点)∴将代入中①②∴∴,故D错误,符合题意故答案为:D.【点睛】本题主要考查了二次函数的图象与函数解析式的关系,可以根据各项系数结合图象进行解答.8、B【解析】试题解析:在中,故选B.9、D【分析】根据“每年的人均收入上一年的人均收入(1年增长率)”即可得.【详解】由题意得:2018年的人均收入为元2019年的人均收入为元则故选:D.【点睛】本题考查了列一元二次方程,理解题意,正确找出等式关系是解题关键.10、A【分析】先根据条件证明△PCF∽△BCP,利用相似三角形的性质:对应角相等,再证明△APD∽△PGD,进而证明△APG∽△BFP再证明时注意图形中隐含的相等的角,故可进行判断.【详解】∵∠CPD=∠B,∠C=∠C,∴△PCF∽△BCP.∵∠CPD=∠A,∠D=∠D,∴△APD∽△PGD.∵∠CPD=∠A=∠B,∠APG=∠B+∠C,∠BFP=∠CPD+∠C∴∠APG=∠BFP,∴△APG∽△BFP.故结论中错误的是A,故选A.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知相似三角形的判定定理.11、C【详解】∵AB是⊙O的切线,∴AB⊥OA,即∠OBA=90°.∵∠BAO=40°,∴∠BOA=50°.∵OB=OC,∴∠OCB=.故选C.12、A【分析】根据圆的性质,垂径定理,圆周角定理,三角形外心的定义,对照选项逐一分析即可.【详解】解:A.在同圆或等圆中,等弧所对的圆周角相等,是真命题;B.平分弦(弦不是直径)的直径垂直于弦,故原命题是假命题;C.在同圆或等圆中,等弦所对的圆周角相等,弦对着两个圆周角,故是假命题;D.三角形外心是三条边垂直平分线的交点,故是假命题;故选:A.【点睛】本题考查了圆的性质,垂径定理,圆周角定理,三角形外心的定义,掌握圆的性质和相关定理内容是解题的关键.二、填空题(每题4分,共24分)13、【分析】连接CE,过点B作BH⊥CD交CD的延长线于点H,可证四边形ACHB是矩形,可得AC=BH,AB=CH,由垂直平分线的性质可得BE=CE,CD=BD,可证CE=BE=CD=DB,通过证明Rt△ACE≌Rt△HBD,可得AE=DH,通过证明△ACD∽△DHB,可得AC2=AE•BE,由勾股定理可得BE2﹣AE2=AC2,可得关于BE,AE的方程,即可求解.【详解】解:连接CE,过点B作BH⊥CD交CD的延长线于点H,∵AC是半圆的切线∴AC⊥AB,∵CD∥AB,∴AC⊥CD,且BH⊥CD,AC⊥AB,∴四边形ACHB是矩形,∴AC=BH,AB=CH,∵DE垂直平分BC,∴BE=CE,CD=BD,且DE⊥BC,∴∠BED=∠CED,∵AB∥CD,∴∠BED=∠CDE=∠CED,∴CE=CD,∴CE=BE=CD=DB,∵AC=BH,CE=BD,∴Rt△ACE≌Rt△HBD(HL)∴AE=DH,∵CE2﹣AE2=AC2,∴BE2﹣AE2=AC2,∵AB是直径,∴∠ADB=90°,∴∠ADC+∠BDH=90°,且∠ADC+∠CAD=90°,∴∠CAD=∠BDH,且∠ACD=∠BHD,∴△ACD∽△DHB,∴,∴AC2=AE•BE,∴BE2﹣AE2=AE•BE,∴BE=AE,∴故答案为:.【点睛】本题考察垂直平分线的性质、矩形的性质和相似三角形,解题关键是连接CE,过点B作BH⊥CD交CD的延长线于点H,证明出四边形ACHB是矩形.14、【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式,写出抛物线解析式,即可.【详解】由题意知:抛物线的顶点坐标是(0,1).∵抛物线向左平移3个单位∴顶点坐标变为(-3,1).∴得到的抛物线关系式是.故答案为.【点睛】本题主要考查了二次函数图像与几何变换,正确掌握二次函数图像与几何变换是解题的关键.15、4﹣6【分析】根据一元二次方程根与系数的关系即可得答案.【详解】设方程的两个根为x1、x2,∵a=1,b=-4,c=-6,∴x1+x2=-=4,x1·x2==-6,故答案为4,﹣6【点睛】本题考查一元二次方程根与系数的关系,若一元二次方程y=ax2+bx+c(a≠0)的两个根为x1、x2,那么,x1+x2=-,x1·x2=;熟练掌握韦达定理是解题关键.16、1【分析】根据题意列出方程,求方程的解即可.【详解】根据题意可得以下方程解得(舍去)故答案为:1.【点睛】本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键.17、-3【分析】直接将点P(a+1,4)代入求出a即可.【详解】直接将点P(a+1,4)代入,则,解得a=-3.【点睛】本题主要考查反比例函数图象上点的坐标特征,熟练掌握反比例函数知识和计算准确性是解决本题的关键,难度较小.18、100【分析】根据Rt△ABC中∠B=50°,推出∠BCA=40°,根据旋转的性质可知,AC=AC1,∠BCA=∠C1=40°,求出∠CAC1的度数,即可求出∠BAB1的度数.【详解】∵Rt△ABC中∠B=50°,∴∠BCA=40°,∵△ABC绕直角顶点A顺时针旋转得到△ADE.当点C在B1C1边所在直线上,∴∠C1=∠BCA=40°,AC=AC1,∠CAB=∠C1AB1,∴∠ACC1=∠C1=40°,∴∠BAB1=∠CAC1=100°,故答案为:100.【点睛】本题考查了旋转的性质和等腰三角形的判定和性质,熟练掌握其判定和性质是解题的关键.三、解答题(共78分)19、,-1.【解析】括号内先通分进行分式的加减法运算,然后再进行分式的乘除法运算,最后选择使原式有意义的数值代入化简后的结果进行计算即可.【详解】原式=,由x-2≠0且(x-1)2≠0可得x≠2且x≠1,所以x=0,当时,原式.【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算法则是解题的关键.20、命题一、二均为真命题,证明见解析.【分析】利用圆周角定理可证明命题正确;利用反证法可证明命题2正确.【详解】命题一、二均为真命题,命题1、命题2都是真命题.证明命题1:如图,四边形ABCD为⊙O的内接四边形,连接OA、OC,∵∠B=∠1,∠D=∠2,而∠1+∠2=360°,∴∠B+∠D=×360°=180°,即圆的内接四边形的对角互补.【点睛】本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.21、(1)证明见解析;(2)证明见解析.【分析】(1)利用SSS可证明△OAD≌△OCD,可得∠ADO=∠CDO,根据等腰三角形“三线合一”的性质可得DE⊥AC,由AB是直径可得∠ACB=90°,即可证明OD//BC;(2)设BC=a,则AC=2a,利用勾股定理可得AD=AB=,根据中位线的性质可用a表示出OE、AE的长,即可表示出OD的长,根据勾股定理逆定理可得∠OAD=90°,即可证明DA与⊙O相切.【详解】(1)连接OC,在△OAD和△OCD中,,∴△OAD≌△OCD(SSS),∴∠ADO=∠CDO,∵AD=CD,∴DE⊥AC,∵AB为⊙O的直径,∴∠ACB=90°,即BC⊥AC,∴OD∥BC;(2)设BC=a,∵AC=2BC,∴AC=2a,∴AD=AB===a,∵OE∥BC,且AO=BO,∴OE为△ABC的中位线,∴OE=BC=a,AE=CE=AC=a,在△AED中,DE===2a,∴OD=OE+DE=,在△AOD中,AO2+AD2=()2+(a)2=a2,OD2=()2=a2,∴AO2+AD2=OD2,∴∠OAD=90°,∵AB是直径,∴DA与⊙O相切.【点睛】本题考查圆周角定理、切线的判定、三角形中位线的性质勾股定理,三角形的中位线平行于第三边,且等于第三边的一半;直径所对的圆周角是直角;经过半径的外端点,且垂直于这条半径的直线是圆的切线;熟练掌握相关性质及定理是解题关键.22、(1)证明见解析;(2).【分析】(1)连接AD,如图,根据圆周角定理,再根据切线的判定定理得到AC是⊙O的切线;(2)作F做FH⊥AB于点H,利用余弦定义,再根据三角函数定义求解即可【详解】(1)证明:如图,连接AD.∵E是中点,∴.∴∠DAE=∠EAB.∵∠C=2∠EAB,∴∠C=∠BAD.∵AB是⊙O的直径.∴∠ADB=∠ADC=90°.∴∠C+∠CAD=90°.∴∠BAD+∠CAD=90°.即BA⊥AC∴AC是⊙O的切线.(2)解:如图②,过点F做FH⊥AB于点H.∵AD⊥BD,∠DAE=∠EAB,∴FH=FD,且FH∥AC.在Rt△ADC中,∵,,∴CD=1.同理,在Rt△BAC中,可求得BC=.∴BD=.设DF=x,则FH=x,BF=-x.∵FH∥AC,∴∠BFH=∠C.∴.即.解得x=2.∴BF=.【点睛】本题考查了解直角三角形的应用和切线的判定,经过半径的外端且垂直于这条半径的直线是圆的切线.连接半径在证明垂直即可23、标语的长度应为米.【解析】首先分析图形,根据题意构造直角三角形.本题涉及到两个直角三角形,即△ABC和△ADC.根据已知角的正切函数,可求得BC与AC、CD与AC之间的关系式,利用公共边列方程求AC后,AE即可解答.【详解】解:在Rt△ABC中,∠ACB=90°,∠ABC=45°,∴Rt△ABC是等腰直角三角形,AC=BC.在Rt△ADC中,∠ACD=90°,tan∠ADC==,∴DC=AC,∵BC-DC=BD,即AC-AC=18,∴AC=45,则AE=AC-EC=45-15=1.答:标语AE的长度应为1米.【点睛】本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.24、(1),;(2)①,,②另一个根是1.【分析】(1)用因式分解法解方程即可;(2)①
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 给同事的感谢信汇编十篇
- 简单辞职申请书模板汇编九篇
- 2021过中秋节作文【5篇】
- 八年级物理教学计划模板八篇
- 生物类实习报告模板集锦7篇
- 酒店辞职报告书集锦15篇
- 边城读后感汇编15篇
- 法律法规及事故案例讲座
- 甘肃省定西市岷县2024-2025学年九年级上学期期末质量监测历史试卷(无答案)
- 交管12123驾驶证学法减分题库及答案
- 浪潮云海数据中心管理平台v5.0-快速部署指南v1.0centos
- 管理心理学 - 国家开放大学
- 缺血性肠病完整版本课件
- 汽车起重机基本结构、工作原理课件
- ××领导班子及成员分析研判报告(模板)
- 08S305-小型潜水泵选用及安装图集
- 视频监控室值班记录表
- 四川2020版清单定额
- 教材编写工作总结
- 企业员工上下班交通安全培训(简详共2份)
- 城市高密度建成区合流制溢流污染系统研究-黄孝河机场河水环境综合治理项目实践
评论
0/150
提交评论