版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市青浦高级中学2023-2024学年数学高一上期末经典试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.在空间四边形ABCD中,AB=BC,AD=CD,E为对角线AC的中点,下列判断正确的是()A平面ABC⊥平面BED B.平面ABC⊥平面ABDC.平面ABC⊥平面ADC D.平面ABD⊥平面BDC2.命题p:∀x∈N,x3>x2的否定形式¬p为()A.∀x∈N,x3≤x2 B.∃x∈N,x3>x2C.∃x∈N,x3<x2 D.∃x∈N,x3≤x23.角是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角4.设是两条不同的直线,是三个不同的平面,给出下列四个命题:①若,,则;②若,,,则;③若,,则;④若,,则.其中正确命题的序号是A.① B.②和③C.③和④ D.①和④5.函数的图像大致为()A. B.C. D.6.已知扇形的圆心角为,面积为,则扇形的半径为()A. B.C. D.7.已知,则()A. B.C.2 D.8.我国著名数学家华罗庚先生曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图象来研究函数的性质,也可用函数的解析式来琢磨函数的图象的特征,如通过函数的解析式可判断其在区间的图象大致为()A. B.C. D.9.已知函数若函数有四个零点,零点从小到大依次为则的值为()A.2 B.C. D.10.若是定义在(-∞,+∞)上的偶函数,∈[0,+∞)且(),则()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.在三棱锥中,,,两两垂直,,,三棱锥的侧面积为13,则该三棱锥外接球的表面积为______.12.已知,则__________13.已知,若,则__________.14.若()与()互为相反数,则的最小值为______.15.的值是________三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.在三棱锥中,,,O是线段AC的中点,M是线段BC的中点.(1)求证:PO⊥平面ABC;(2)求直线PM与平面PBO所成的角的正弦值.17.已知函数为奇函数.(1)求实数a的值;(2)求的值.18.已知二次函数的图象与轴、轴共有三个交点.(1)求经过这三个交点的圆的标准方程;(2)当直线与圆相切时,求实数的值;(3)若直线与圆交于两点,且,求此时实数的值.19.已知是方程的两根,且,求的值20.已知(其中a为常数,且)是偶函数.(1)求实数m的值;(2)证明方程有且仅有一个实数根,若这个唯一的实数根为,试比较与的大小.21.物联网(InternetofThings,缩写:IOT)是基于互联网、传统电信网等信息承载体,让所有能行使独立功能的普通物体实现互联互通的网络.其应用领域主要包括运输和物流、工业制造、健康医疗、智能环境(家庭、办公、工厂)等,具有十分广阔的市场前景.现有一家物流公司计划租地建造仓库储存货物,经过市场调查了解到下列信息:仓库每月土地占地费(单位:万元),仓库到车站的距离x(单位:千米,),其中与成反比,每月库存货物费(单位:万元)与x成正比;若在距离车站9千米处建仓库,则和分别为2万元和7.2万元.(1)求出与解析式;(2)这家公司应该把仓库建在距离车站多少千米处,才能使两项费用之和最小?最小费用是多少?
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、A【解析】利用面面垂直的判定定理逐一判断即可【详解】连接DE,BE.因为E为对角线AC的中点,且AB=BC,AD=CD,所以DE⊥AC,BE⊥AC因为DE∩BE=E,所以AC⊥面BDEAC⊂面ABC,所以平面ABC⊥平面BED,故选A【点睛】本题主要考查了面面垂直的判定,要求熟练掌握面面垂直的判定定理2、D【解析】根据含有一个量词命题的否定的定义求解.【详解】因为命题p:∀x∈N,x3>x2的是全称量词命题,其否定是存在量词命题,所以¬p:∃x∈N,x3≤x2故选:D【点睛】本题主要考查含有一个量词命题的否定,还考查了理解辨析的能力,属于基础题.3、B【解析】找到与终边相等的角,进而判断出是第几象限角.【详解】因为,所以角和角是终边相同的角,因为角是第二象限角,所以角是第二象限角.故选:B.4、A【解析】结合直线与平面垂直的性质和平行判定以及平面与平面的位置关系,逐项分析,即可.【详解】①选项成立,结合直线与平面垂直的性质,即可;②选项,m可能属于,故错误;③选项,m,n可能异面,故错误;④选项,该两平面可能相交,故错误,故选A.【点睛】本题考查了直线与平面垂直的性质,考查了平面与平面的位置关系,难度中等.5、A【解析】通过判断函数的奇偶性排除CD,通过取特殊点排除B,由此可得正确答案.【详解】∵∴函数是偶函数,其图像关于轴对称,∴排除CD选项;又时,,∴,排除B,故选.6、C【解析】利用扇形的面积公式即可求解.【详解】设扇形的半径为,则扇形的面积,解得:,故选:C7、B【解析】先求出,再求出,最后可求.【详解】因为,故,因为,故,而,故,所以,故,所以,故选:B8、A【解析】根据函数的定义域,函数的奇偶性,函数值的符号及函数的零点即可判断出选项.【详解】当时,令,得或,且时,;时,,故排除选项B.因为为偶函数,为奇函数,所以为奇函数,故排除选项C;因为时,函数无意义,故排除选项D;故选:A9、C【解析】函数有四个零点,即与图象有4个不同交点,可设四个交点横坐标满足,由图象,结合对数函数的性质,进一步求得,利用对称性得到,从而可得结果.【详解】作出函数的图象如图,函数有四个零点,即与的图象有4个不同交点,不妨设四个交点横坐标满足,则,,,可得,由,得,则,可得,即,,故选C.【点睛】函数的性质问题以及函数零点问题是高考的高频考点,考生需要对初高中阶段学习的十几种初等函数的单调性、奇偶性、周期性以及对称性非常熟悉;另外,函数零点的几种等价形式:函数的零点函数在轴的交点方程的根函数与的交点.10、B【解析】,有当时函数为减函数是定义在上的偶函数即故选二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】根据侧面积计算得到,再计算半径为,代入表面积公式得到答案.【详解】三棱锥的侧面积为,所以故该三棱锥外接球的半径为:,球的表面积为.故答案为:【点睛】本题考查了三棱锥的外接球问题,意在考查学生的空间想象能力和计算能力.12、【解析】将题干中的两个等式先平方再相加,利用两角差的余弦公式可求得结果.【详解】由,,两式相加有,可得故答案为:.13、【解析】由已知先求得,再求得,代入可得所需求的函数值.【详解】由已知得,即,所以,而,故答案为.【点睛】本题考查函数求值中的给值求值问题,关键在于由已知的函数值求得其数量关系,代入所需求的函数解析式中,可得其值,属于基础题.14、2【解析】有题设得到,利用基本不等式求得最小值.【详解】由题知,,则,,则,当且仅当时等号成立,故答案为:215、【解析】根据诱导公式以及特殊角的三角函数值求解.【详解】解:故答案为:【点睛】本题考查诱导公式以及特殊角的三角函数值,解答的关键是熟练记忆公式,属于基础题.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)证明见解析;(2)【解析】(1)利用勾股定理得出线线垂直,结合等边三角形的特点,再次利用勾股定理得出线线垂直,进而得出线面垂直;(2)根据线面垂直面,得出线和面的夹角,从而得出线面角的正弦值.【详解】(1)由,有,从而有,且又是边长等于的等边三角形,.又,从而有又平面.(2)过点作交于点,连.由(1)知平面,得,又平面是直线与平面所成的角.由(1),从而为线段的中点,,,所以直线与平面所成的角的正弦值为17、(1)(2)【解析】(1)由奇函数定义求;(2)代入后结合对数恒等式计算.【详解】(1)因为函数为奇函数,所以恒成立,可得.(2)由(1)可得.所以.【点睛】本题考查函数的奇偶性,考查对数恒等式,属于基础题.18、(1);(2)或;(3)【解析】(1)先求出二次函数的图象与坐标轴的三个交点的坐标,然后根据待定系数法求解可得圆的标准方程;(2)根据圆心到直线的距离等于半径可得实数的值;(3)结合弦长公式可得所求实数的值【详解】(1)在中,令,可得;令,可得或所以三个交点分别为,,,设圆的方程为,将三个点的坐标代入上式得,解得,所以圆的方程为,化为标准方程为:(2)由(1)知圆心,因为直线与圆相切,所以,解得或,所以实数的值为或(3)由题意得圆心到直线的距离,又,所以,则,解得所以实数的值为或【点睛】(1)求圆的方程时常用的方法有两种:一是几何法,即求出圆的圆心和半径即可得到圆的方程;二是用待定系数法,即通过代数法求出圆的方程(2)解决圆的有关问题时,要注意圆的几何性质的应用,合理利用圆的有关性质进行求解,可以简化运算、提高解题的效率19、【解析】先计算出的值并分析的范围,再计算出的值,结合的范围求解出的值.【详解】因为,,所以,所以,因为,又因为,所以.20、(1)(2)【解析】(1)由偶函数的定义得对任意的实数恒成立,进而整理得恒成立,故;(2)设,进而得唯一实数根,使得,即,故,再结合得得答案.【小问1详解】解:因为是偶函数,所以对于任意的实数,有,所以对任意的实数恒成立,即恒成立,所以,即,【小问2详解】解:设,因为当时,,所以在区间上无实数根,当时,因为,,所以,使得,又在上单调递减,所以存在唯一实数根;因为,所以,又,所以,所以.所以21、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《简·爱》读书笔记500字10篇
- 2021员工个人工作总结5篇
- 在企业的实习报告模板五篇
- 敬老院志愿活动个人总结五篇
- 庆祝中国人民警察节心得作文
- 电视台实习报告模板集合10篇
- 2024年新型企业食堂租赁及运营合作协议书3篇
- 小学语文教师工作评价
- “两个结合”视域下课程思政融入通识课的路径探索
- 电梯维修工培训资料
- 市场监督管理局企业注册、经营范围登记规范表述:行业分类及条目代码
- 2023-2024学年青海省西宁市小学数学二年级上册期末自测试题
- 2023年中国工商银行度校园招聘笔试题库及答案解析
- 机械系统运动方案设计示例
- FQW矿用风动潜水泵说明书
- QC成果降低钻孔灌注桩混凝土损耗率
- GB/T 16275-2008城市轨道交通照明
- GB 7102.1-1994食用植物油煎炸过程中的卫生标准
- 2023年1月浙江高考思想政治卷试题真题(含参考答案)
- 注塑工艺培训资料史上最全课件
- 夏普电视故障检修
评论
0/150
提交评论