版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市西南模范中学2023年数学高一上期末调研模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知全集U={0,1,2}且={2},则集合A的真子集共有A.3个 B.4个C.5个 D.6个2.下列命题中正确的是()A.若两个向量相等,则它们的起点和终点分别重合B.模相等的两个平行向量是相等向量C.若和都是单位向量,则=D.两个相等向量的模相等3.若sinx<0,且sin(cosx)>0,则角是A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角4.若不等式对一切恒成立,那么实数的取值范围是A. B.C. D.5.设,表示两个不同平面,表示一条直线,下列命题正确的是()A.若,,则.B.若,,则.C.若,,则.D.若,,则.6.已知,则下列选项中正确的是()A. B.C. D.7.已知,则()A. B.7C. D.18.下面四个不等式中不正确的为A. B.C. D.9.若直线过点,,则此直线的倾斜角是()A.30° B.45°C.60° D.90°10.若,则()A. B.C. D.211.已知函数,若对任意,总存在,使得,则实数的取值范围是()A. B.C. D.12.函数的图象如图所示,则函数y的表达式是()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.直线与圆相交于A,B两点,则线段AB的长为__________14.设函数是以4为周期的周期函数,且时,,则__________15.已知在平面直角坐标系中,角顶点在原点,始边与轴的正半轴重合,终边经过点,则___________.16.如图是某个铁质几何体的三视图,其中每个小正方形格子的边长均为个长度单位,将该铁质几何体熔化,制成一个大铁球,如果在熔制过程中材料没有损耗,则大铁球的表面积为_______________________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.某中学调查了某班全部45名学生参加社会实践活动和社会公益活动的情况,数据如表单位:人:参加社会公益活动未参加社会公益活动参加社会实践活动304未参加社会实践活动83从该班随机选1名学生,求该学生未参加社会公益活动也未参加社会实践活动的概率;在参加社会公益活动,但未参加社会实践活动的8名同学中,有5名男同学,,,,,三名女同学,,,现从这5名男同学和3名女同学中各随机选1人参加岗位体验活动,求被选中且未被选中的概率18.已知函数.(Ⅰ)对任意的实数,恒有成立,求实数的取值范围;(Ⅱ)在(Ⅰ)的条件下,当实数取最小值时,讨论函数在时的零点个数.19.已知函数的定义域为,在上为增函数,且对任意的,都有(1)试判断的奇偶性;(2)若,求实数的取值范围20.已知(1)若p为真命题,求实数x的取值范围(2)若p为q成立的充分不必要条件,求实数a的取值范围21.已知函数,,g(x)与f(x)互为反函数.(1)若函数在区间内有最小值,求实数m的取值范围;(2)若函数y=h(g(x))在区间(1,2)内有唯一零点,求实数m的取值范围.22.已知函数(1)求的单调递增区间;(2)若不等式在上恒成立,求实数的取值范围.
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、A【解析】,所以集合A的真子集的个数为个,故选A.考点:子集2、D【解析】考查所给的四个选项:向量是可以平移的,则若两个向量相等,则它们的起点和终点不一定分别重合,A说法错误;向量相等向量模相等,且方向相同,B说法错误;若和都是单位向量,但是两向量方向不一致,则不满足,C说法错误;两个相等向量的模一定相等,D说法正确.本题选择D选项.3、D【解析】根据三角函数角的范围和符号之间的关系进行判断即可【详解】∵﹣1≤cosx≤1,且sin(cosx)>0,∴0<cosx≤1,又sinx<0,∴角x为第四象限角,故选D【点睛】本题主要考查三角函数中角的象限的确定,根据三角函数值的符号去判断象限是解决本题的关键4、D【解析】由绝对值不等式解法,分类讨论去绝对值,再根据恒成立问题的解法即可求得a的取值范围【详解】根据绝对不等式,分类讨论去绝对值,得所以所以所以选D【点睛】本题考查了绝对值不等式化简方法,恒成立问题的基本应用,属于基础题5、C【解析】由或判断;由,或相交判断;根据线面平行与面面平行的定义判断;由或相交,判断.【详解】若,,则或,不正确;若,,则,或相交,不正确;若,,可得没有公共点,即,正确;若,,则或相交,不正确,故选C.【点睛】本题主要考查空间平行关系的性质与判断,属于基础题.空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.6、A【解析】计算的取值范围,比较范围即可.【详解】∴,,.∴.故选:A.7、A【解析】利用表示,代入求值.【详解】,即,.故选:A8、B【解析】A,利用三角函数线比较大小;B,取中间值1和这两个数比较;C,利用对数函数图象比较这两个数的大小;D,取中间值1和这两个数比较【详解】解:A,如图,利用三角函数线可知,所对的弧长为,,∴,A对;B,由于,B错;C,如图,,则,C对;D,,D对;故选:B【点睛】本题主要考查比较两个数的大小,考查三角函数线的作用,考查指对数式的大小,属于基础题9、A【解析】根据两点求解直线的斜率,然后利用斜率求解倾斜角.【详解】因为直线过点,,所以直线的斜率为;所以直线的倾斜角是30°,故选:A.10、B【解析】应用倍角正余弦公式及商数关系将目标式化为,结合已知即可求值.【详解】由题意知,,故选:B.11、C【解析】先将不等式转化为对应函数最值问题:,再根据函数单调性求最值,最后解不等式得结果.【详解】因为对任意,总存在,使得,所以,因为当且仅当时取等号,所以,因为,所以.故选:C.【点睛】对于不等式任意或存在性问题,一般转化为对应函数最值大小关系,即;,12、A【解析】由函数的最大、最小值,算出和,根据函数图像算出周期,利用周期公式算出.再由当时函数有最大值,建立关于的等式解出,即可得到函数的表达式.【详解】函数的最大值为,最小值为,,,又函数的周期,,得.可得函数的表达式为,当时,函数有最大值,,得,可得,结合,取得,函数的表达式是.故选:.【点睛】本题给出正弦型三角函数的图象,求它的解析式.着重考查了三角函数的周期公式、三角函数的图象的变换与解析式的求法等知识属于中档题.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】算出弦心距后可计算弦长【详解】圆的标准方程为:,圆心到直线的距离为,所以,填【点睛】圆中弦长问题,应利用垂径定理构建直角三角形,其中弦心距可利用点到直线的距离公式来计算14、##0.5【解析】利用周期和分段函数的性质可得答案.【详解】,.故答案为:.15、【解析】根据角的终边经过点,利用三角函数的定义求得,然后利用二倍角公式求解.【详解】因为角的终边经过点,所以,所以,所以,故答案为:16、【解析】由已知得该铁质几何体是由一个小铁球和一个铁质圆锥体拼接而成,根据圆锥和球体的体积公式可得答案.【详解】该铁质几何体是由一个小铁球和一个铁质圆锥体拼接而成,体积之和为,设制成的大铁球半径为,则,得,故大铁球的表面积为.故答案为:.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2).【解析】从该班随机选1名学生,利用古典概型能求出该学生未参加社会公益活动也未参加社会实践活动的概率基本事件总数,被选中且未被选中包含的基本事件个数,由此能求出被选中且未被选中的概率【详解】解:从该班随机选1名学生,该学生既未参加社会公益活动也未参加社会实践活动的概率在参加社会公益活动,但未参加社会实践活动的8名同学中,有5名男同学,,,,,三名女同学,,,现从这5名男同学和3名女同学中各随机选1人参加岗位体验活动,基本事件总数,被选中且未被选中包含的基本事件个数,被选中且未被选中的概率【点睛】本题考查概率的求法,考查古典概型等基础知识,属于基础题18、(Ⅰ);(Ⅱ)见解析.【解析】(Ⅰ)由可知,区间是不等式解集的子集,由此可得出实数的不等式,解出即可;(Ⅱ)由题意可知,,则,令,可得出,令,对实数的取值范围进行分类讨论,先讨论方程的根的个数及根的范围,进而得出方程的根个数,由此可得出结论.【详解】(Ⅰ),,对任意的实数,恒有成立,则区间是不等式解集的子集,,解得,因此,实数的取值范围是;(Ⅱ),由题意可知,,,令,得,令,则,作出函数和函数在时的图象如下图所示:作出函数在时的图象如下图所示:①当或时,即当或时,方程无实根,此时,函数无零点;②当时,即当时,方程根为,而方程在区间上有两个实根,此时,函数有两个零点;③当时,即当时,方程有两根、,且,,方程在区间上有两个实根,方程在区间上有两个实根,此时,函数有四个零点;④当时,即当时,方程有两根分别为、,方程在区间上只有一个实根,方程在区间上有两个实根,此时,函数有三个零点;⑤当时,即当时,方程只有一个实根,且,方程在区间上有两个实根,此时,函数有两个零点;⑥当时,即当时,方程只有一个实根,方程在区间上只有一个实根,此时,函数只有一个零点.综上所述,当或时,函数无零点;当时,函数只有一个零点;当或时,函数有两个零点;当时,函数有三个零点;当时,函数有四个零点.【点睛】本题考查利用二次不等式求参数,同时也考查了复合型二次函数的零点个数的分类讨论,解题时要将函数分解为内层函数和外层函数来分析,考查数形结合思想与分类讨论思想的应用,属于难题.19、(1)奇函数(2)【解析】(1)抽象函数用赋值法,再结合函数奇偶性的定义判断即可;(2)利用奇函数的单调性和定义及函数的单调性,联立不等式不等式组,再解不等式组即可.【小问1详解】因为函数定义域为,令,得.令,得,即,所以函数为奇函数【小问2详解】由(1)知函数为奇函数,又知函数的定义域为,在上为增函数,所以函数在上为增函数因为,即,所以,解得,所以实数的取值范围为20、(1)(2)【解析】(1)根据命题为真可求不等式的解.(2)根据条件关系可得对应集合的包含关系,从而可求参数的取值范围.【小问1详解】因为p为真命题,故成立,故.【小问2详解】对应的集合为,对应的集合为,因为p为q成立的充分不必要条件,故为的真子集,故(等号不同时取),故.21、(1);(2).【解析】(1)根据二次函数的性质研究情况下的单调性和值域,根据对数复合函数的单调性及其开区间最值,列不等式求参数范围.(2)将问题化为在内有唯一零点,利用二次函数的性质求参数范围即可.【小问1详解】由题设,,,所以在定义域上递增,在上递
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年社会健康大班教案
- 财务部全年工作概述
- 《肺栓塞诊治新进展》课件
- 化妆师为客户化妆设计妆容
- 儿童教育行业教育启蒙培训心得
- 防务行业战术训练培训总结
- 2024年税务师题库及完整答案
- 2024年计算机网络个人简历
- 2024年甘孜职业学院单招职业技能测试题库有答案
- 农村宅基地父母继承协议书(2篇)
- 2025年安徽交控集团招聘笔试参考题库含答案解析
- 促进临床合理用药持续改进措施
- 精神科护理岗位竞聘
- 广西北海市2023-2024学年八年级(上)期末数学试卷
- 非急救转运合同范例
- 车辆使用安全培训
- 肺结核的护理个案
- AutoCAD2024简明教程资料
- 《中国传统文化》课件模板(六套)
- 民航客舱服务管理Ⅱ学习通超星期末考试答案章节答案2024年
- 儿科主任年终总结
评论
0/150
提交评论