小学数学中部分易混概念辨析_第1页
小学数学中部分易混概念辨析_第2页
小学数学中部分易混概念辨析_第3页
小学数学中部分易混概念辨析_第4页
小学数学中部分易混概念辨析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGE2PAGE5小学数学中部分易混概念辨析南明区教师学习与资源中心钟云珠小学数学概念是构成小学数学基础知识的重要内容,其中,有一些意义相近却不尽相同、互有联系又有所区别的概念,较易混淆。在教学中,应注意辨析它们的异同,把每一个概念区别于其他概念的本质特征突出出来,以利于学生清晰地理解、牢固地掌握、准确地运用。数学基础知识有:概念、法则、定理、性质。一、数学概念及其表现形式(一)数学概念数学概念在数学思维中起着十分重要的作用,它是最基本的思维形式。判断是由概念构成的,推理和证明又是由判断构成的,可以说,数学概念是数学的细胞。判断、推理、证明都基于对概念的理解。数学概念是客观现实中的数量关系和空间形式的本质属性在人脑中的反映。本质属性:世界上的万事万物都有许多的性质,如形状、颜色、气味等。一个事物除了有许多性质外,还与其他事物间存在各种关系,如,上下、左右、大于、小于、胜负、平等、互助等等,在形式逻辑中把事物的性质和关系,统称为事物的属性。任何事物都有许多的属性,在事物的诸多属性中,有些属性是某个或某类事物所特有的,决定该事物的本质,使某一事物之所以成为它自己,并把这种事物与其他事物区别开来。这种事物的基本属性就是事物的本质属性,它是事物本质的规定性。(二)小学数学概念的表现形式在小学数学教材中的概念,根据小学生的接受能力,表现形式各不相同,其中描述式和定义式是最主要的两种表示形式。1.定义式定义式是用确切而简要的语言揭示概念的内涵或外延的方法。概念的内涵是指概念所反映对象的特性和本质属性,外延是指概念所反映对象的具体范围。如:两组对边分别平行叫的四边形做平行四边形。(比如:平行四边形的定义,首先它是“四边形”,条件是“两组对边分别平行”.“平行四边形”的内涵包含了“四边形”所有的内涵,而“两组对边分别平行”是平行四边形独有的、用以区别于一般四边形的本质属性.因此,教学中,教师只要抓住四边形的概念和两组对边分别平行,引导学生思考“一个四边形具备了什么特征才是平行四边形”,就可以自然地使学生建立起对新概念“平行四边形”的本质属性的理解.那么,平行四边形的内涵(也就是它的特性和本质属性)是什么呢?两组对边分别平行且相等,对角相等,邻角相等等等。它的外延是什么呢?具有平行四边形本质属性的所有对象,如:大小不同的平行四边形、长方形、正方形、菱形(后面这几是特殊的平行四边形)。另外,概念的内涵越多,则外延越小;内涵越小,则外延越大。如,我们来给“平行四边形”的概念增加内涵看看,如果增加“有一个角为直角”的话,就可以得到“长方形”的概念,那么再增加一个内涵“邻边相等”,又可以得到“正方形”的概念.“平行四边形”概念的教学,为后续概念的学习,奠定了基础.如果在“平行四边形”的概念的内涵中减少“两组对边平行”的属性,就得到了外延扩大的“四边形”的概念了。

可见,从数学知识发展的需要出发,对“概念体系”进行分析,可以了解到概念间的从属关系,形成明晰的知识结构,并清晰地认识到学习“平行四边形”概念的“合理性”.概念的内涵就是反映在概念中的对象的本质属性,它说明概念所反映的事物是什么样的.“平行四边形”的含义是:两组对边分别平行,这就是“平行四边形”的内涵.它揭示了“平行四边形”与“四边形”的隶属关系,以及它们之间的区别与联系,反映了“平行四边形“的本质属性.其中的关键词“两组对边分别平行”,既可以作为平行四边形的判定方法,又可以是平行四边形的一个性质.)2.描述式用一些生动、具体的语言对概念进行描述,叫做描述式。这种方法与定义式不同,描述式概念,一般借助于学生通过感知所建立的表象,选取有代表性的特例做参照物而建立。如:“我们在数物体的时候,用来表示物体个数的1、2、3、4、5……叫自然数”(这里是例举数数时的自然数,并不是没有例举到的0不是自然数,0是自然数的);“象1.25、0.726、0.005等都是小数”等。这样的概念将随着儿童知识的增多和认识的深化而日趋完善。在小学数学教材中一般用于以下两种情况:【数系的扩展】数系(把一个数集连同相应的运算及结构叫做数系)经历了五次扩展:(1)扩大的自然数(a-a→0)[原自然数集是不包含0的,在计算两个相同的自然数相减的过程中发现在自然数集中找不到它们相减的得数的时候,所以就把自然数集扩大到了0,就得到了扩大的自然数集](2)非负有理数(a/b→正分数)[在计算a/b的商不能用整数表示时,引入正分数,就得到了扩大的非负有理数集](3)有理数(四则运算→负有理数)[在进行四则运算中,要引入负有理数,就得到了扩大的有理数集](4)实数(x2-2=0,在有理数集无解→无理数)[在解方程x2-2=0的过程中,在有理数集中无解,就引入无理数,从而就得到了扩大的实数集]整数正整数负整数自然数0分数(百分数)真分数假分数(带分数)小数有限小数纯小数带小数无限小数循环小数纯循环小数整数正整数负整数自然数0分数(百分数)真分数假分数(带分数)小数有限小数纯小数带小数无限小数循环小数纯循环小数混循环小数无限不循环小数数小学数学中的数,包括:分数与百分数:联系:都是分数,只不过百分数是一种特殊的分数;区别:分数既可表示具体的量,如二分之一米、三分之二千克,又可表示两个量间的倍比关系,如男生人数是全班人数的五分之三;而百分数只表示两个数量间的倍比关系,所以百分数又叫百分比、百分率。在百分数后面不能带计量单位名称(即百分数不是名数),如百分之二十三吨,不能写成23%吨,也就是不能写成百分号的23%吨了。它们的书写形式不同,百分数的书写在数字后加上百分号。带分数:是假分数的另一种书写方式。小学阶段:主要学习的是整数、分数和小数。2、分数与小数(1)小数的意义

小数:把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。

一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。

在小数里,每相邻两个计数单位之间的进率都是10。小数的整数部分的最低位是个位,计数单位是1,它没有最高位;小数部分的最高位是十分位,它的最高位分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10,它没有最低位。(2)小数的分类

纯小数:整数部分是零的小数,叫做纯小数。如:0.25、0.368都是纯小数。

带小数:整数部分不是零的小数,叫做带小数。如:3.25、5.26都是带小数。有限小数:小数部分的数位是有限的小数,叫做有限小数。例如:41.7、25.3、0.23都是有限小数。无限小数:小数部分的数位是无限的小数,叫做无限小数。例如:4.33……3.1415926……无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。例如:π(圆周率,它是一个无理数)循环小数:一个数的小数部分,从某一位起向右有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。例如:3.555……0.0333……12.109109……

循环节:一个循环小数的小数部分,从某一个数字开始,有一个数字或者几个数字,依次不断重复出现的数字叫做这个循环小数的循环节(强调:循环节要从小数部分从左往右看)。例如:3.99……的循环节是“9”,0.5454……的循环节是“54”。

纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。例如:3.111……0.5656……

混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。3.1222……0.03333……注意:写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环节只有一个数字,就只在它的上面点一个点。0.54545……循环小数化分数:一个循环节所组成的数作为分子,分母是循环节的位数有几个,分母就由几个9组成,比如,循环节是一位,分母就是9,两位,分母就是99,三位,分母就是999;混循环小数化分数:用第二个循环节以前的小数部分的数减去不循环的部分组成的数作为分子;循环节有几位,从高位起就有排几个9,小数部分在第一个循环节前面有几位,就在最后一个9的后面添上几个0,就组成了分母,比如,0.3269191……,化成分数就是(32691-326)/99000(3)分数的意义

分数:把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。

在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线上面的数叫做分子,表示有这样的多少份。

(4)分数单位:把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。

(5)分数的分类

真分数:分子比分母小的分数叫做真分数。真分数小于1。

假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。

带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。

(6)小数与分数的关系3、约分与通分

把一个分数化成同它相等但是分子、分母都比较小的分数(的过程),叫做约分。(不过在教学中,我们应强调能约成最简分数的,还是要约成最简分数。)分子分母是互质数的分数,叫做最简分数。

把异分母分数分别化成和原来分数相等的同分母分数(的过程),叫做通分。

相同点:约分,通分都是依据分数的基本性质将其化成等值分数。不同点:约分是用相同的数(0除外)同时整除分数的分子和分母;通分是把分数的分子分母同时乘相同的数(0除外);约分是就个体而言,通分对群体而言。4、数位、位数与计数单位思考:一个数的最高位是千万位,这个数是(八)位数。亿位上的5表示(五个亿)。与千万位相邻的数位是(亿位、百万位)。以上问题涉及哪些概念?数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。(与十进制的计数单位相对应的数位是个位、十位……)位数:是指一个自然数中含有数位的个数(位数是对整数来讲的)。像458这个数由三个数字组成,每个数字占了一个数位,我们就把它叫做三位数。(大家想一想最小的一位是几呢?最小的一位数是1。0不是一位数。组数的规则是左起不能为0.)[没有争议后面这些就不用讲:位数是指一个整数所占有数位的个数。把占有一个数位的数叫一位数,占有两个数位的数叫两位数等等,例如,48076是五位数,因为它占有五个数位,这里的“0”占有数位,表示百位上一个单位也没有。那么0能不能称一位数呢?不能。因为记数法里有个规定:一个数的最高位不能是0.用一个不是0的数字写出的数叫做一位数。为什么要这样规定呢?因为若没有这样的规定,0就是一位数,由此可以得出最小的两位数是00,最小的三位数是000,这样的结论显然是不对的。不仅这样,若没有这样的规定,对个数也就无法确定它是几位数了。例如,15是两位数,“015”就变成了三位数,“0015”)就变成了四位数。这样,同一个数我们可以随意称它为几位数,“位数”这一概念的存在也就没有必要了。因此,一个数的最高位不能是“0”。]“数位”与“位数”不能混淆。198023456(一亿九千八百万零二万三千四百五十六)由9个数字组成,那它就是一个九位数,4在百位。一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。整数和小数数位顺序表整数部分小数点小数部分…级级级数位…位位位位位位位位位位十位个位十分位位位位…计数单位…十(个(个)十分之一…判断:①如果甲数是乙数的5倍,那么乙数一定是甲数的因数。(错,不一定)②一个自然数,不是质数就是合数。(错,还有1和0)③所有的奇数都是质数,所有的偶数都是合数。(错,比如2)④一个数的倍数一定大于它的因数。(错,它本身,它既是最大的因数,也是最小的倍数)⑤两个数的最小公倍数是这两个数的最大公因数的倍数。(对的)⑥有公因数1的两个数是互质数。(错,前面必须是要有“只”字)⑦两个合数一定不是互质数。(错,比如8和9)⑧一个数的质因数都是质数。(对的)5、整除与除尽观察并分类:①12÷7=1……5②6÷5=1.2③1.5÷0.3=5④24÷2=12(②③④是除尽,③④是整除,)整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a。整除与除尽都是没有余数的除法,但它们的含义是不同的。整除是整数范围的除法,整除的两个数和所得商必须都是整数,而除尽并不局限于整数范围内,被除数、除数和商既可以是整数,也可以是有限小数。由此可见,“整除”是“除尽”的一种特殊情况,能整除的一定能除尽,能除尽的却不一定能整除。6、因数与倍数如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的因数(或a的因数)。倍数和因数是相互依存的。因为35能被7整除,所以35是7的倍数,7是35的因数。

一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。例如:10的因数有1、2、5、10,其中最小的因数是1,最大的因数是10。一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12……其中最小的倍数是3,没有最大的倍数。7、奇数和偶数自然数按能否被2整除的特征可分为奇数和偶数。能被2整除的数叫做偶数。

不能被2整除的数叫做奇数。

0也是偶数。作为老师我们要有所了解。(偶数的表现形式是:2n;奇数的表现形式是:2n+1,所以0是偶数。)8、质数与合数一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97共25个。

一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,例如4、6、8、9、12都是合数。1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。

9、质数与互质数公因数只有1的两个数,叫做互质数。成互质关系的两个数,有下列几种情况一定互质:①1和任何自然数互质。②相邻的两个自然数互质。③两个不同的质数互质。=4\*GB3④当合数不是质数的倍数时,这个合数和这个质数互质。质数是针对一个数而言,如5是质数,互质数是针对两个数来说的,如3和4是互质数,8和9是互质数,成为互质数的两个数不一定都是质数。如果几个数中任意两个都互质,就说这几个数两两互质。10、质因数、分解质因数每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5叫做15的质因数。

把一个合数用质因数相乘的形式表示出来,叫做分解质因数。例如把28分解质因数28=2×2×7,(不能写成2×2×7=28,这是算式)11、最大公因数和最小公倍数几个数公有的因数,叫做这几个数的公因数。其中最大的一个,叫做这几个数的最大公因数,例如12的因数有1、2、3、4、6、12;18的因数有1、2、3、6、9、18。其中,1、2、3、6是12和18的公因数,6是它们的最大公因数。如果较小数是较大数的因数,那么较小数就是这两个数的最大公因数。

如果两个数是互质数,它们的最大公因数就是1。

几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6、8、10、12、14、16、18……;3的倍数有3、6、9、12、15、18……其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。

如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。12、能被2、3、5、9、25、4、125、8整除的数的特征个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304都能被2整除。个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。

一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。一个数各位数上的和能被9整除,这个数就能被9整除。能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:18464、1404、1256都能被4整除,50、325、500、1675都能被25整除。一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。

13.分数、除法与比的联系与区别?(看到3分之2这个分数,你可能会联想到了什么?商、分数、比、除法、数轴上的点或线)分数、除法与比名称比分数除法形式a:ba÷b联系前项分子被除数比号分数线除号后项分母除数比值分数值商比的基本性质分数的基本性质商不变性质区别两个数的关系一个数一种运算(另外要强调的是:比和除法是不能表示1个数的)14、化简比与求比值的区别化简比的结果必须是一个比,(只是化简后的比的前项和后项是互质的整数),可用(真、假)分数或比的形式来表示,求比值的结果是一个数:小数、整数、分数(真、带)。方法上也有所不同:化简比可根据比的基本性质,也可用求比值的方法(前项除以后项),但结果必须是比的形式。15、比和比例以及正比例和反比例(1)比和比例的意义与性质比比例意义两个数相除又叫做两个数的比。表示两个比相等的式子叫做比例。各部分名称0.9:0.6=1.5前项后项比值5:6=20:24内项外项基本性质比的前项和后项都乘上或除以相同的数(0除外),比值不变。在比例里,两个内项的积等于两个外项的积。16.正比例和反比例的相同点和不同点?正比例反比例相同点1、都有两种相关的量。2、一种量随着另一种量变化。不同点1、变化方向相同,一种量扩大或缩小,另一种量也扩大或缩小。2、相对应的每个数的比值(商)是一定的。(是一个不等于0的常量)1、变化方向相反,一种量扩大(缩小),另一种量反而缩小(扩大)。2、相对应的每两个数的积是一定的。(是一个不等于0的常量)(在第一次培训中,有老师提出这样的问题:商一定时,除数与被除数是否一定成正比例?被除数等于0时,商也为0,实际上在小学阶段,所有成正比例的量它都没有说K≠0的前提,但实际上正比例函数在初中阶段,它是有一个前提的K≠0,而且在初中的教材中的呈现形式是Y=KX,因此,X可以为0,Y也为0,所以正比例函数,当K>0时,它是在一、三项线过原点,当K<0时,它是在二、四项线过原点,但是如果是以除法的形式呈现,那么除数是不能为0的,也就是X不能为0,所以在小学阶段,它有前提是两种相关联的量,一种量随另一种量变化,它有这样的前提,那么,大前提它没有特别的说K≠0,所以商一定,被除数和除数是成正比例的。我们老师心理要掌握清楚,在小学阶段,分阶段掌握正比例乘正比例的量的时候,在小学阶段K值是不能为0的。)【基本性质】分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变;小数的基本性质:小数的末尾(强调末尾)添上“0”或者去掉“0”,小数的大小不变;商不变的性质:在除法里,被除数和除数同时乘或除以相同的数(0除外),商不变;比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变;比例的基本性质:在比例里,两内项之积等于两外项之积。17.方程、方程的解与解方程方程:含有未知数的等式叫做方程。注意:方程是等式,又含有未知数,两者缺一不可。【未知数:是在解方程中有待确定的值】方程的解:使方程左右两边相等的未知数的值,叫做方程的解。解方程:求方程的解的过程叫做解方程。(X=1是方程吗?是的,X=1有未知数,也是等式。但是在方程中X应该是待确定的值,而X=1,它即是方程的解,又是方程,所以不建议出现X=1这种形式的方程。)(二)空间与图形思考:小学阶段学习了哪些线、面、体?它们有什么区别和联系?18.线段、射线、直线、垂线、平行线空间中一点沿着一定方向和它的相反方向运动,所成的图形是直线。空间中一点沿着一定方向运动,所成的图形是射线。平行线

:在同一平面内,不相交的两条直线叫做平行线。(平行线的定义有那个内涵是不可缺少的?在同一平面内,因为异面的两条直线可能不相交,但它们也不平行)两条平行线之间的垂线长度都相等。垂线:两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,相交的点叫做垂足。(要记住标出垂直符号。)从直线外一点到这条直线所画的垂线的长叫做这点到直线的距离。

(一条直线垂直于一个面,那么它就垂直于这个面上的所有直线,这个例要说明的是:有的概念是不能反过来说的。)画角的时,别记了画角的符号,不画角的符号也是有角的,但是所指就不明确了19、角及其分类画角的时,别记了画角的符号,不画角的符号也是有角的,但是所指就不明确了具有公共端点的两条射线所组成的图形叫做角。锐角:大于0°并小于90°的角叫做锐角。

直角:等于90°的角叫做直角。

钝角:大于90°而小于180°的角叫做钝角。

平角:角的两边成一条直线,这时所组成的角叫做平角。平角180°。

周角:角的一边旋转一周,与另一边重合。周角是360°。(锐角、直角、钝角都是劣角;大于平角并小于周角的角叫优角)(好请大家看看这个角有几个角?如果我们根据角的动态描述来看:一条射线围绕它的端点旋转而成的图形,就是角。那么我们来用这个角的一边,也就是其中的一条射线来转转看,转后会引出老师们的争议,在小学阶段没这么复杂,提问:在学小阶段研究的哪个角呢?老师们会回答,这里是要提醒老师们别忘了画角的符号,很多老师在教学的过程中,都没注意画这个符号,不画这个符号的话它就有无数个角,所以在教学中,一定要要求学生画角的符号)20.周长与面积判断:边长为4厘米的正方形,周长与面积相等。(不对,意义不同,单位不同,计算方法不同,求周长时:第一个4是边长,第二个4是边数;求面积时的4是边长。)举例说明周长与面积的区别与联系。(注意:我们在求不规则图形的面积的时候,在进行图形转换的过程中,一定要抓住面积不能变进行转换。)21、平面图形及其关系小学阶段学习了哪些平面图形?它们有什么区别与联系?请用韦恩图分别表示出三角形和四边形的关系。20、平面图形及其关系四边形四边形平行四边形长方形正方形梯形等腰梯形直角梯形三角形按角分类锐角三角形直角三角形钝角三角形任意三角形等腰三角形等边三角形圆平面图形22.圆和圆面(大家想一想在教学圆的时候,是怎样出示圆的图形给学生的?大多数老师拿一个圆形的纸片,告诉学生这就是圆,但是实际上给学生出视的是一个圆面。)而圆是在平面内,到一个定点的距离等于定长的点的集合叫做圆(即通常所说的圆周);圆周所包含的平面部分叫做圆面。(圆上是指那个部分?也就圆周上的点。圆面上通常又叫做圆内,外面部分叫做圆外。在教学中应注意圆上、圆内、圆外之间的区别)22、周长与面积、以及表面积、侧面积与地积(地积指的是土地面积)(注意:我们在求不规则图形的面积时,图形的转换要抓住面积能变。)23、对称图形、轴对称图形、轴对称、对称轴、中心对称图形、平面对称图形请问天安门城楼这栋建筑它属于对称图形吗?好下面我们先来看这些概念,最后再来看它属于什么.把一个图形沿着某一条直线对折,如果它能够与另一个图形重合,那么就说明这两个图形关于这条直线对称,两个图形中的对应点叫做关于这条直线的对称点,这条直线叫做对称轴。两个图形关于直线对称也叫轴对称。在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴,画对称轴的时候,对称轴用点画线表示,而不是画虚线的形式表示,请老师们注意提醒学生。轴对称图形是一个具有特殊形状的图形,如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形就是关于这条轴对称的。如果一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形叫做中心对称图形。而这个中心点,叫做中心对称点。中心对称图形上每一对对称点所连成的线段都被对称中心平分。在平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和另一个图形完全重合,那么就说这两个图形成中心对称。(两个图形)这个点叫做对称中心。旋转对称图形:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.(旋转角0度<旋转角<360度).(比如我们出示一幅天安门城楼的图片,它是什么图形?它是轴对图形。那么假如我们站在天安门城楼前,看到的天安门城楼呢?它是对称现象。在小学阶段学的是轴对称图形,是在平面内沿一条直线折叠,直线两旁的部分完全重合的图形,一定要关注它的本质属性。注意:小学阶段我们学习的是轴对称图形,要注意把它与对称现象的区别,)判断:边长为6厘米的正方体,体积与表面积相等(错,首先它们的概念是不一样的,单位也是不一样的,计算方法也是不一样的)24.体:长方体、正方体、圆柱、圆锥、球长方体、正方体、圆柱、圆锥它们之间有什么区别与联系?它们都是由面围成的立体图形。长方体与正方体的区别与联系:长方体有六个面,六个面是长方形,但有一种特殊的情况,有两个面是正方形的情况,长方形的相对的面大小相同、面积相等。正方体的六个面都是正方形,且面积都相等。从棱上看长方体和正方体都有12条棱,长方体里它是相对棱的长度相等,而正方体的12条棱的长度完全相等。它们都是有8个顶点。正方体是特殊的长方体。长方体和正方体之间是一个包含与被包含的关系。圆柱和圆锥:这里所讲的圆柱和圆锥都是直圆柱、直圆锥。圆柱是两个底面相等的圆,展开侧面是一个长方形或正方形,圆柱的侧面积等于底面周长乘圆柱的高。圆锥底面是一个圆,侧面展开是一个扇形,它们之间的联系:前提条件是等底等高的情况下,圆柱的体积是圆锥的体积的3倍,反过来,圆锥的体积是圆柱的体积的三分之一倍。25、地积、表面积与侧面积(小学阶段不怎么接触地积,但是在这里介绍一下,地积指的是土地的面积,是指较大的土地面积。表面积与侧面积是针对立体图形而言,表面积包涵侧面积,也就是说侧面积是表面积的一部分。)26.体积与容积容积与体积是有着密切的联系,即它们的计算方法都是用体积公式计算。但体积与容积是两个不同的概念,它们的区别有三:(1)意义不同。体积是指物体所占空间的大小。容积是指容器(杯子、盒子、油桶等)所能容纳物体的大小(即内部体积)。(2)度量方法不同。计算体积时是从物体的外面去测量。比如:计算用玻璃做成的长方体金鱼缸的体积,就要从外面去分别测量出长方体金鱼缸的长、宽、高的长度。如果要计算这个长方体金鱼缸的容积(或容量),所需要的数据,就必须从金鱼缸里面去测量,因为做金鱼缸的玻璃是有一定厚度的。(3)计量单位不完全同。计算物体的体积,必须使用体积单位“立方米、立方分米、立方厘米”等。计算容积一般使用容积单位“升、毫升”;但计算较大物体的容积时,也用“立方米”,因为升和毫升只限于计量液体,如桶装的汽油、小瓶装的药水。(三)统计与概率27.平均数、中位数与众数(新颁布的新课标中讲了,中位数和众数,9月份以后就不再放在小学学习了,顺延到中学去了。)比如现在有一组数据:1,2,3,4,4,5,5,5,6,7,8,8,9,从小到大排好了顺序,一共是13个,其中5有3个,4和8分别有2个,其他都是1个。平均数,就是把一组中所有数据相加,然后除以它们的个数。就得到这组数的平均数。中位数,就是这些数据排列好了以后中间的那个数字,比如现在是13个,中间那个应该是第7个,所以就是5,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论