版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省成都市新都区2023年数学八上期末经典试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.使分式有意义的x的取值范围是()A.x> B.x< C.x≠3 D.x≠2.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有匹,小马有匹,则可列方程组为()A. B.C. D.3.下列国旗中,不是轴对称图形的是()A. B.C. D.4.阅读下列各式从左到右的变形你认为其中变形正确的有()A.3个 B.2个 C.1个 D.0个5.图是一个长为宽为的长方形,用剪刀沿它的所有对称轴剪开,把它分成四块,然后按图那样拼成一个正方形,则中间阴影部分的面积是()A. B.C. D.6.已知等腰三角形的两边长分别为3和6,则它的周长等于()A.12 B.12或15 C.15 D.15或187.如图,是我们学过的用直尺和三角板画平行线的方法示意图,画图的原理是()A.两直线平行,同位角相等 B.同位角相等,两直线平行C.内错角相等,两直线平行 D.同旁内角互补,两直线平行8.如图,△ABC的面积是1cm2,AD垂直于∠ABC的平分线BD于点D,连接DC,则与△BDC面积相等的图形是()A. B. C. D.9.在平面直角坐标系中,点P的坐标为(,1),则点P所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.的算术平方根为()A. B. C. D.11.下列方程中是二元一次方程的是()A. B.C. D.12.下列是世界各国银行的图标,其中不是轴对称图形的是()A. B. C. D.二、填空题(每题4分,共24分)13.化简得.14.已知直线:与直线:在同一坐标系中的图象交于点,那么方程组的解是______.15.如图,等边中,边上的高,点是高上的一个动点,点是边的中点,在点运动的过程中,存在的最小值,则这个最小值是___________.16.如图,ΔABC与ΔA′B′C′关于直线l对称,则∠B的度数为____.17.已知直线y=ax+b和直线y=bx+3a的交点坐标是(2,﹣1),则a+b=_____.18.将二次根式化为最简二次根式____________.三、解答题(共78分)19.(8分)计算(1)(2)(3)解方程组:20.(8分)如图,、两个村子在笔直河岸的同侧,、两村到河岸的距离分别为,,,现在要在河岸上建一水厂向、两村输送自来水,要求、两村到水厂的距离相等.(1)在图中作出水厂的位置(要求:尺规作图,不写作法,保留作图痕迹);(2)求水厂距离处多远?21.(8分)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.22.(10分)阅读材料:解分式不等式<1解:根据实数的除法法则:同号两数相除得正数,异号两数相除得负数,因此,原不等式可转化为:①或②解①得:无解;解②得:﹣2<x<1所以原不等式的解集是﹣2<x<1请仿照上述方法解下列不等式:(1)(2)(x+2)(2x﹣6)>1.23.(10分)小明骑自行车从甲地到乙地,图中的折线表示小明行驶的路程与所用时间之间的函数关系.试根据函数图像解答下列问题:(1)小明在途中停留了____,小明在停留之前的速度为____;(2)求线段的函数表达式;(3)小明出发1小时后,小华也从甲地沿相同路径匀速向乙地骑行,时,两人同时到达乙地,求为何值时,两人在途中相遇.24.(10分)如图1,在平面直角坐标系中,直线AB分别交y轴、x轴于点A(1,a),点B(b,1),且a、b满足a2-4a+4+=1.(1)求a,b的值;(2)以AB为边作Rt△ABC,点C在直线AB的右侧,且∠ACB=45°,求点C的坐标;(3)若(2)的点C在第四象限(如图2),AC与x轴交于点D,BC与y轴交于点E,连接DE,过点C作CF⊥BC交x轴于点F.①求证:CF=BC;②直接写出点C到DE的距离.25.(12分)如图,△ABC中,AB=AC,点E、F在边BC上,BF=CE,求证:AE=AF.26.如图所示,∠A=∠D=90°,AB=DC,AC,BD相交于点M,求证:(1)∠ABC=∠DCB;(2)AM=DM.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据分式有意义的条件是分母不等于零列出不等式,解不等式得到答案.【详解】解:由题意得,2x﹣1≠0,解得,x≠,故选:D.【点睛】本题考查了分数有意义,解题的关键是掌握分式有意义的条件是:分母不为零.2、B【分析】设大马有匹,小马有匹,根据题意可得等量关系:大马数+小马数=100,大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程即可.【详解】解:设大马有匹,小马有匹,由题意得:,故选:B.【点睛】本题主要考查的是由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.3、A【分析】一个图形沿一条直线对折后,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,据此进行判断即可.【详解】解:A、不是轴对称图形,符合题意;
B、是轴对称图形,不合题意;
C、是轴对称图形,不合题意;
D、是轴对称图形,不合题意.
故选:A.【点睛】本题考查轴对称图形,解题的关键是掌握轴对称图形的判断方法:把一个图形沿一条直线对折,如果图形的两部分能够重合,那么这个是轴对称图形.4、D【分析】根据分式的基本性质进行分析判断即可.【详解】由分式的基本性质可知:(1)等式中从左至右的变形是错误的;(2)等式中从左至右的变形是错误的;(3)等式中从左至右的变形是错误的;(4)等式中从左至右的变形是错误的.故上述4个等式从左至右的变形都是错的.故选D.【点睛】熟记“分式的基本性质:分式的分子和分母同时乘以(或除以)同一个值不为0的整式,分式的值不变.”是解答本题的关键.5、D【分析】根据图形列出算式,再进行化简即可.【详解】阴影部分的面积S=(a+b)2−2a•2b=a2+2ab+b2−4ab=(a−b)2,故选:D.【点睛】本题考查了完全平方公式的应用,能根据图形列出算式是解此题的关键.6、C【分析】只给出等腰三角形两条边长时,要对哪一条边是腰长进行分类讨论,再将不满足三角形三边关系的情况舍去,即可得出答案.【详解】解:∵等腰三角形的两边长分别是3和6,∴①当腰为6时,三角形的周长为:;②当腰为3时,,三角形不成立;∴此等腰三角形的周长是1.故选:C.【点睛】本题主要考查等腰三角形的概念和三角形的三边关系,当等腰三角形腰长不确定时一定要分类讨论,得到具体的三条边长后要将不满足三边关系的答案舍去.7、B【分析】由已知可知∠DPF=∠BAF,从而得出同位角相等,两直线平行.【详解】解:如图:∵∠DPF=∠BAF,∴a∥b(同位角相等,两直线平行).故选:B.【点睛】本题考查了平行线的判定方法,熟练掌握平行线的判定方法,根据题意得出同位角相等是解决问题的关键.8、D【分析】利用等腰三角形“三线合一”的性质以及与三角形中线有关的面积计算,求得阴影面积为0.5,再计算各选项中图形的面积比较即可得出答案.【详解】延长AD交BC于E,∵BD是∠ABC平分线,且BD⊥AE,根据等腰三角形“三线合一”的性质得:AD=DE,∴,,∴,A、,不符合题意;B、,不符合题意;C、,不符合题意;D、,符合题意;故选:D.【点睛】本题考查了等腰三角形的判定和性质,三角形中线有关的面积计算,熟知等腰三角形“三线合一”的性质是解题的关键.9、A【分析】根据平方数非负数判断出点P的横坐标是正数,再根据各象限内点的坐标特征解答.【详解】解:∵,∴,∴点P的横坐标是正数,∴点P(,1)所在的象限是第一象限.故选A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).10、B【解析】分析:先求得的值,再继续求所求数的算术平方根即可.详解:∵=2,而2的算术平方根是,∴的算术平方根是,故选B.点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.11、B【分析】含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.【详解】解:化简得,最高次是2次,故A选项错误;是二元一次方程,故B选项正确;不是整式方程,故C选项错误;最高次是2次,故D选项错误.故选:B【点睛】本题主要考查的是二元一次方程的概念,正确的掌握二元一次方程的概念是解题的关键.12、D【解析】本题考查的是轴对称图形的定义.把图形沿某条直线折叠直线两旁的部分能够重合的图形叫轴对称图形.A、B、C都可以,而D不行,所以D选项正确.二、填空题(每题4分,共24分)13、.【解析】试题分析:原式=.考点:分式的化简.14、【分析】根据两个一次函数组成的方程组的解就是两函数图象的交点可得答案.【详解】解:直线:与直线:在同一坐标系中的图象交于点,方程组的解是,故答案为.【点睛】此题主要考查了一次函数与二元一次方程组的关系,关键是掌握凡是函数图象经过的点必能满足解析式.15、1【分析】先连接CE,再根据EB=EC,将FE+EB转化为FE+CE,最后根据两点之间线段最短,求得CF的长,即为FE+EB的最小值.【详解】解:连接CE,
∵等边△ABC中,AD是BC边上的中线
∴AD是BC边上的高线,即AD垂直平分BC,
∴EB=EC,
当C、F、E三点共线时,EF+EC=EF+BE=CF,
∵等边△ABC中,F是AB边的中点,
∴AD=CF=1,
∴EB+EF的最小值为1,
故答案为:1.【点睛】本题主要考查了等边三角形的性质,熟练掌握和运用等边三角形的性质以及轴对称的性质是解决本题的关键.解题时注意,最小值问题一般需要考虑两点之间线段最短或垂线段最短等结论.16、100°【分析】依据轴对称的性质可得到∠C=∠C′,然后依据三角形的内角和定理求解即可.【详解】解:∵△ABC与△A′B′C′关于直线l对称,
∴∠C=∠C′=30°.
∴∠B=180°-∠A-∠C=180°-50°-30°=100°.
故答案为100°.【点睛】本题主要考查的是轴对称的性质、三角形的内角和定理,熟练掌握相关知识是解题的关键.17、1【分析】把交点坐标(2,﹣1)代入直线y=ax+b和直线y=bx+3a,解方程组即可得到结论.【详解】解:∵直线y=ax+b和直线y=bx+3a的交点坐标是(2,﹣1),∴,解得:,∴a+b=1,故答案为:1.【点睛】本题主要考查了两直线相交问题以及函数图象上点的坐标特征,满足解析式的点就在函数的图象上,在函数图象上的点,就一定满足函数解析式.18、5.【分析】首先将50分解为25×2,进而开平方得出即可.【详解】解:故答案为:【点睛】此题主要考查了二次根式的化简,正确开平方是解题关键.三、解答题(共78分)19、(1)0;(2)1;(3)【分析】(1)在进行实数运算时,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.(2)先利用平方差公式和二次根式的除法法则运算,然后合并即可;(3)方程组利用加减消元法即可解答.【详解】(1)解:=3-4-2-(-3)=-1+1=0(2)解:原式=2-3+=-1+2=1;(3)解:将方程组整理成一般式得:①+②,得:4x=12解得x=3,将x=3代人①,得:3+4y=14,解得:y=所以方程组的解为.【点睛】此题考查实数的运算,零指数幂,负整数指数幂,平方差公式,二次根式的混合运算,解二元一次方程组,解题关键在于掌握运算法则.20、(1)详见解析;(2)水厂距离处.【分析】(1)作线段AB的垂直平分线,与CD的交点即为E点的位置;(2)根据垂直平分线的性质及勾股定理得出方程解答即可.【详解】(1)如图,点E为所求的点.(2)设CE=x,则DE=6-x在中,在中,由(1)知,AE=BE∴解得答:水厂距离处.【点睛】本题考查的是尺规作图-线段的垂直平分线及勾股定理,掌握垂直平分线的性质及勾股定理的应用是关键.21、(1)证明见解析;(2)结论:四边形ACDF是矩形.理由见解析.【分析】(1)只要证明AB=CD,AF=CD即可解决问题;(2)结论:四边形ACDF是矩形.根据对角线相等的平行四边形是矩形判断即可;【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠AFC=∠DCG,∵GA=GD,∠AGF=∠CGD,∴△AGF≌△DGC,∴AF=CD,∴AB=AF.(2)解:结论:四边形ACDF是矩形.理由:∵AF=CD,AF∥CD,∴四边形ACDF是平行四边形,∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=120°,∴∠FAG=60°,∵AB=AG=AF,∴△AFG是等边三角形,∴AG=GF,∵△AGF≌△DGC,∴FG=CG,∵AG=GD,∴AD=CF,∴四边形ACDF是矩形.【点睛】本题考查平行四边形的判定和性质、矩形的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.22、(1)-<x≤2;(2)x>3或x<﹣2【分析】(1)把分式不等式转化为不等式(组)即可解决问题.(2)把整式不等式转化为不等式(组)即可解决问题.【详解】(1)原不等式可转化为:①或②解①得无解,解②得﹣<x≤2,所以原不等式的解集是﹣<x≤2;(2)原不等式可转化为:①或②解①得x>3,解②得x<﹣2,所以原不等式的解集是x>3或x<﹣2.【点睛】本题考查解一元一次不等式组,分式不等式以及整式等知识,解题的关键是学会用转化的思想思考问题.23、(1)2,10;(2)s=15t-40;(3)t=3h或t=6h.【分析】(1)由图象中的信息可知:小明从第2小时到第4小时行驶的路程没有发生变化,所以途中停留了2;小明2小时内行驶的路程是20km,据此可以求出他的速度;
(2)由图象可知:B(4,20),C(5,35),设线段的函数表达式为s=kt+b,代入后得到方程组,解方程组即可;
(3)先求出从甲地到乙地的总路程,现求小华的速度,然后分三种情况讨论两人在途中相遇问题.当时,10t=10(t-1);当时,20=10(t-1);当时,15t-40=10(t-1);逐一求解即可.【详解】解:(1)由图象可知:小明从第2小时到第4小时行驶的路程没有发生变化,所以途中停留了2;由图象可知:小明2小时内行驶的路程是20km,所以他的速度是(km/h);故答案是:2;10.
(2)设线段的函数表达式为s=kt+b,由图象可知:B(4,20),C(5,35),∴,∴,∴线段的函数表达式为s=15t-40;
(3)在s=15t-40中,当t=6时,s=15×6-40=50,∴从甲地到乙地全程为50km,∴小华的速度=(km/h),下面分三种情况讨论两人在途中相遇问题:当时,两人在途中相遇,则10t=10(t-1),方程无解,不合题意,舍去;当时,两人在途中相遇,则20=10(t-1),解得t=3;当时,两人在途中相遇,则15t-40=10(t-1),解得t=6;∴综上所述,当t=3h或t=6h时,两人在途中相遇.【点睛】本题考查了一次函数的应用,能够正确理解函数图象横纵坐标表示的意义,解题关键是理解一些关键点的含义,并结合实际问题数量关系进行求解.24、(2)a=2,b=-2;(2)满足条件的点C(2,2)或(2,-2);(3)①证明见解析;②2.【分析】(2)可得(a−2)2+=2,由非负数的性质可得出答案;
(2)分两种情况:∠BAC=92°或∠ABC=92°,根据等腰直角三角形的性质及全等三角形的性质可求出点C的坐标;
(3)①如图3,过点C作CL⊥y轴于点L,则CL=2=BO,根据AAS可证明△BOE≌△CLE,得出BE=CE,根据ASA可证明△ABE≌△BCF,得出BE=CF,则结论得证;
②如图4,过点C作CK⊥ED于点K,过点C作CH⊥DF于点H,根据SAS可证明△CDE≌△CDF,可得∠BAE=∠CBF,由角平分线的性质可得CK=CH=2.【详解】(2)∵a2−4a+4+=2,
∴(a−2)2+=2,
∵(a-2)2≥2,≥2,
∴a-2=2,2b+2=2,
∴a=2,b=-2;
(2)由(2)知a=2,b=-2,
∴A(2,2),B(-2,2),
∴OA=2,OB=2,
∵△ABC是直角三角形,且∠ACB=45°,
∴只有∠BAC=92°或∠ABC=92°,
Ⅰ、当∠BAC=92°时,如图2,
∵∠ACB=∠ABC=45°,
∴AB=CB,
过点C作CG⊥OA于G,
∴∠CAG+∠ACG=92°,
∵∠BAO+∠CAG=92°,
∴∠BAO=∠ACG,
在△AOB和△BCP中,
,
∴△AOB≌△CGA(AAS),
∴CG=OA=2,AG=OB=2,
∴OG=OA-AG=2,
∴C(2,2),
Ⅱ、当∠ABC=92°时,如图2,
同Ⅰ的方法得,C(2,-2);
即:满足条件的点C(2,2)或(2,-2)
(3)①如图3,由(2)知点C(2,-2),
过点C作CL⊥y轴于点L,则CL=2=BO,
在△BOE和△CLE中,
,
∴△BOE≌△CLE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年标准砌体工程分包合同样本一
- 美食springboot课程设计
- 专题01基础知识综合(原卷版)
- 用户画像课程设计
- 自然课程设计营销推广
- 换热网络课程设计
- 理论课程设计需要考虑
- 湖南省株洲市2024-2025学年高三上学期期末考试政治试题(解析版)
- 直播器材培训课程设计
- 汽修行业修理工技能提升总结
- GB/T 30680-2014氟橡胶板通用技术条件
- 41.胁痛(胆囊结石)中医临床路径
- 车间现场安全培训内容课件参考
- 油藏工程-油藏物质平衡方法-1课件
- 三上书法《撇》教学课件
- 河北省廊坊市药品零售药店企业药房名单目录
- 超星尔雅学习通《三国志导读》章节测试(含答案)
- 简单的个人原因辞职报告(通用17篇)
- 交响曲欣赏-完整版PPT
- 公司软件销售管理制度
- micro810可编程控制器用户手册
评论
0/150
提交评论