版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省泸县联考2023年数学九年级第一学期期末质量跟踪监视试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.若点P(﹣m,﹣3)在第四象限,则m满足()A.m>3 B.0<m≤3 C.m<0 D.m<0或m>32.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A. B. C. D.3.在一个不透明纸箱中放有除了标注数字不同外,其他完全相同的3张卡片,上面分别标有数字1,2,3,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之和为奇数的概率为()A. B. C. D.4.一元二次方程的左边配成完全平方后所得方程为()A. B. C. D.5.在平面直角坐标系中,点关于原点对称的点的坐标是()A. B. C. D.6.下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形不一定是平行四边形D.对角线互相垂直平分且相等的四边形一定是正方形7.如图,四边形ABCD内接于,它的一个外角,分别连接AC,BD,若,则的度数为()A. B. C. D.8.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房建设力度年市政府共投资亿元人民币建设廉租房万平方米,预计到年底三年共累计投资亿元人民币建设廉租房,若在这两年内每年投资的增长率都为,可列方程()A. B.C. D.9.如图,已知AB∥CD∥EF,AC=4,CE=1,BD=3,则DF的值为()A. B. C. D.110.如图,在平面直角坐标系中,一次函数y=-4x+4的图像与x轴,y轴分别交于A,B两点,正方形ABCD的顶点C,D在第一象限,顶点D在反比例函数的图像上,若正方形ABCD向左平移n个单位后,顶点C恰好落在反比例函数的图像上,则n的值是()A.2 B.3 C.4 D.5二、填空题(每小题3分,共24分)11.如图,港口A在观测站O的正东方向,OA=4.某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为____.
12.使函数有意义的自变量的取值范围是___________.13.若某斜面的坡度为,则该坡面的坡角为______.14.如图,在中,,,将绕顶点顺时针旋转,得到,点、分别与点、对应,边分别交边、于点、,如果点是边的中点,那么______.15.超市决定招聘一名广告策划人员,某应聘者三项素质测试的成绩如下表:测试项目创新能力综合知识语言表达测试成绩/分将创新能力,综合知识和语言表达三项测试成绩按的比例计入总成绩,则该应聘者的总成绩是__________分.16.如图,抛物线y=ax2+bx+c与x轴相交于点A,B(m+2,0),与y轴相交于点C,点D在该抛物线上,坐标为(m,c),则点A的坐标是________.17.如图,三个顶点的坐标分别为,以原点O为位似中心,把这个三角形缩小为原来的,可以得到,已知点的坐标是,则点的坐标是______.18.将一些相同的圆点按如图所示的规律摆放:第1个图形有3个圆点,第2个形有7个圆点,第3个图形有13个圆点,第4个图形有21个圆点,则第20个图形有_____个圆点.三、解答题(共66分)19.(10分)如图,是的直径,且,点为外一点,且,分别切于点、两点.与的延长线交于点.(1)求证:;(2)填空:①当__________时,四边形是正方形.②当____________时,为等边三角形.20.(6分)杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体看成一点的路线是抛物线的一部分,如图所示.求演员弹跳离地面的最大高度;已知人梯高米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由.21.(6分)如图,矩形中,是边上一动点,过点的反比例函数的图象与边相交于点.(1)点运动到边的中点时,求反比例函数的表达式;(2)连接,求的值.22.(8分)如图,一次函数y=kx+b(k,b为常数,k≠0)的图象与反比例函数的图象交于A、B两点,且与x轴交于点C,与y轴交于点D,A点的横坐标与B点的纵坐标都是3.(1)求一次函数的表达式;(2)求△AOB的面积;(3)写出不等式kx+b>﹣的解集.23.(8分)如图,是的直径,是的弦,延长到点,使,连结,过点作,垂足为.(1)求证:;(2)求证:为的切线.24.(8分)如图,是的直径,轴,交于点.(1)若点,求点的坐标;(2)若为线段的中点,求证:直线是的切线.25.(10分)在毕业晚会上,同学们表演哪一类型的节目由自己摸球来决定.在一个不透明的口袋中,装有除标号外其它完全相同的A、B、C三个小球,表演节目前,先从袋中摸球一次(摸球后又放回袋中),如果摸到的是A球,则表演唱歌;如果摸到的是B球,则表演跳舞;如果摸到的是C球,则表演朗诵.若小明要表演两个节目,则他表演的节目不是同一类型的概率是多少?26.(10分)如图,已知的三个顶点坐标为,,.(1)将绕坐标原点旋转,画出旋转后的,并写出点的对应点的坐标;(2)将绕坐标原点逆时针旋转,直接写出点的对应点Q的坐标;(3)请直接写出:以、、为顶点的平行四边形的第四个顶点的坐标.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据第四象限内点的特点,横坐标是正数,列出不等式求解即可.【详解】解:根据第四象限的点的横坐标是正数,可得﹣m>1,解得m<1.故选:C.【点睛】本题考查平面直角坐标系中各象限内点的坐标符号,关键是掌握四个象限内点的坐标符号.2、B【解析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A、C、D都不是中心对称图形,只有B是中心对称图形.故选B.3、B【分析】先画出树状图得出所有等可能的情况的数量和所需要的情况的数量,再计算所需要情况的概率即得.【详解】解:由题意可画树状图如下:根据树状图可知:两次摸球共有9种等可能情况,其中两次摸出球所标数字之和为奇数的情况有4种,所以两次摸出球所标数字之和为奇数的概率为:.【点睛】本题考查了概率的求法,能根据题意列出树状图或列表是解题关键.4、B【解析】把常数项﹣5移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.【详解】把方程x2﹣2x﹣5=0的常数项移到等号的右边,得到x2﹣2x=5,方程两边同时加上一次项系数一半的平方,得到:x2﹣2x+(﹣1)2=5+(﹣1)2,配方得:(x﹣1)2=1.故选B.【点睛】本题考查了配方法解一元二次方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5、B【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(-x,-y),可以直接写出答案.【详解】点P(-3,4)关于原点对称的点的坐标是(3,-4).故选:B.【点睛】本题主要考查了关于原点对称的点的坐标特点,关键是掌握两个点关于原点对称时坐标变化特点:横纵坐标均互为相反数.6、D【分析】根据矩形的判定、菱形的判定、平行四边形和正方形的判定判断即可.【详解】解:A、对角线相等的平行四边形是矩形,原命题是假命题;B、对角线互相垂直的平行四边形是菱形,原命题是假命题;C、对角线互相平分的四边形一定是平行四边形,原命题是假命题;D、对角线互相垂直平分且相等的四边形一定是正方形,原命题是真命题;故选:D.【点睛】此题主要考查了命题与定理,正确把握特殊四边形的判定方法是解题关键.7、A【分析】先根据圆内接四边形的性质得出∠ADC=∠EBC=65°,再根据AC=AD得出∠ACD=∠ADC=65°,故可根据三角形内角和定理求出∠CAD=50°,再由圆周角定理得出∠DBC=∠CAD=50°.【详解】解:∵四边形ABCD内接于⊙O,∴∠ADC=∠EBC=65°.∵AC=AD,∴∠ACD=∠ADC=65°,∴∠CAD=180°-∠ACD-∠ADC=50°,∴∠DBC=∠CAD=50°,故选:A.【点睛】本题考查了圆内接四边形的性质,以及圆周角定理的推论,熟知圆内接四边形的对角互补是解答此题的关键.也考查了等腰三角形的性质以及三角形内角和定理.8、B【分析】根据1013年市政府共投资1亿元人民币建设了廉租房,预计1015年底三年共累计投资亿元人民币建设廉租房,由每年投资的年平均增长率为x可得出1014年、1015年的投资额,由三年共投资9.5亿元即可列出方程.【详解】解:这两年内每年投资的增长率都为,则1014年投资为1(1+x)亿元,1015年投资为1(1+x)1亿元,由题意则有,故选B.【点睛】本题考查了一元二次方程的应用——增长率问题,正确理解题意是解题的关键.若原来的数量为a,平均每次增长或降低的百分率为x,经过第一次调整,就调整到a×(1±x),再经过第二次调整就是a×(1±x)(1±x)=a(1±x)1.增长用“+”,下降用“-”.9、C【分析】根据平行线分线段成比例定理即可得出结论.【详解】解:∵直线AB∥CD∥EF,AC=4,CE=1,BD=3,∴即,解得DF=.
故选:C.【点睛】本题考查的是平行线分线段成比例定理,熟知三条平行线截两条直线,所得的对应线段成比例是解答此题的关键.10、B【分析】由一次函数的关系式可以求出与x轴和y轴的交点坐标,即求出OA,OB的长,由正方形的性质,三角形全等可以求出DE、AE、CF、BF的长,进而求出G点的坐标,最后求出CG的长就是n的值.【详解】如图过点D、C分别做DE⊥x轴,CF⊥y轴,垂足分别为E,F.CF交反比例函数的图像于点G.把x=0和y=0分别代入y=-4x+4得y=4和x=1∴A(1,0),B(0,4)∴OA=1,OB=4由ABCD是正方形,易证△AOB≌△DEA≌△BCF(AAS)∴DE=BF=OA=1,AE=CF=OB=4∴D(5,1),F(0,5)把D点坐标代入反比例函数y=,得k=5把y=5代入y=,得x=1,即FG=1CG=CF-FG=4-1=3,即n=3故答案为B.【点睛】本题考查了反比例函数的图像上的坐标特征,正方形的性质,以及全等三角形判断和性质,根据坐标求出线段长是解决问题的关键.二、填空题(每小题3分,共24分)11、1【解析】过点A作AD⊥OB于D.先解Rt△AOD,得出AD=OA=1,再由△ABD是等腰直角三角形,得出BD=AD=1,则AB=AD=1.【详解】如图,过点A作AD⊥OB于D.在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4,∴AD=OA=1.在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB-∠AOB=75°-30°=45°,∴BD=AD=1,∴AB=AD=1.即该船航行的距离(即AB的长)为1.故答案为1.【点睛】本题考查了解直角三角形的应用-方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.12、且【分析】根据二次根式的性质和分式的性质即可得.【详解】由二次根式的性质和分式的性质得解得故答案为:且.【点睛】本题考查了二次根式的性质、分式的性质,二次根式的被开方数为非负数、分式的分母不能为零是常考知识点,需重点掌握.13、30°【分析】根据坡度与坡比之间的关系即可得出答案.【详解】∵∴坡面的坡角为故答案为:【点睛】本题主要考查坡度与坡角,掌握坡度与坡角之间的关系是解题的关键.14、【分析】设AC=3x,AB=5x,可求BC=4x,由旋转的性质可得CB1=BC=4x,A1B1=5x,∠ACB=∠A1CB1,由题意可证△CEB1∽△DEB,可得,即可表示出BD,DE,再得到A1D的长,故可求解.【详解】∵∠ACB=90°,sinB=,∴设AC=3x,AB=5x,∴BC==4x,∵将△ABC绕顶点C顺时针旋转,得到△A1B1C,∴CB1=BC=4x,A1B1=5x,∠ACB=∠A1CB1,∵点E是A1B1的中点,∴CE=A1B1=2.5x=B1E=A1E,∴BE=BC−CE=1.5x,∵∠B=∠B1,∠CEB1=∠BED∴△CEB1∽△DEB∴∴BD=,DE=1.5x,∴A1D=A1E-DE=x,则x:=故答案为:.【点睛】本题考查了旋转的性质,解直角三角形,相似三角形的判定和性质,证△CEB1∽△DEB是本题的关键.15、【详解】解:5+3+2=10.,故答案为:77.16、(-2,0)【解析】由C(0,c),D(m,c),得函数图象的对称轴是,设A点坐标为(x,0),由A.
B关于对称轴对称得,解得x=−2,即A点坐标为(−2,0),故答案为(−2,0).17、(1,2)【解析】解:∵点A的坐标为(2,4),以原点O为位似中心,把这个三角形缩小为原来的,∴点A′的坐标是(2×,4×),即(1,2).故答案为(1,2).18、1【分析】观察图形可知,每个图形中圆点的个数为序号数的平方加上序号数+1,依此可求第n个图有多少个圆点.【详解】解:由图形可知,第1个图形有12+1+1=3个圆点;第2个图形有22+2+1=7个圆点;第3个图形有32+3+1=13个圆点;第4个图形有42+4+1=21个圆点;…则第n个图有(n2+n+1)个圆点;所以第20个图形有202+20+1=1个圆点.故答案为:1.【点睛】此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.三、解答题(共66分)19、(1)见解析;(2)①;②【分析】(1)由切线长定理可得MC=MA,可得∠MCA=∠MAC,由余角的性质可证得DM=CM;(2)①由正方形性质可得CM=OA=3;②由等边三角形的性质可得∠D=60,再由直角三角形的性质可求得答案.【详解】证明:(1)如图,连接,,分别切于点、两点,,,,,是直径,,,,,,,(2)①四边形是正方形,,当时,四边形是正方形,②若是等边三角形,,且,,,,,当时,为等边三角形.【点睛】本题是圆的综合题,考查了切线长定理,直角三角形的性质,正方形的性质,等边三角形的性质等知识,熟练运用这些性质进行推理是正确解答本题的关键.20、(1);(2)能成功;理由见解析.【分析】(1)将抛物线解析式整理成顶点式,可得最大值,即为最大高度;(2)将x=4代入抛物线解析式,计算函数值是否等于3.4进行判断.【详解】(1)y=-x2+3x+1=-+∵-<0,∴函数的最大值是.答:演员弹跳的最大高度是米.(2)当x=4时,y=-×42+3×4+1=3.4=BC,所以这次表演成功.【点睛】此题将用待定系数法求二次函数解析式、动点问题和最小值问题相结合,有较大的维跳跃,考查了同学们的应变能力和综合思维能力,是一道好题.21、(1);(2).【分析】(1)先求出点F坐标,利用待定系数法求出反比例函数的表达式;(2)利用点F的的横坐标为4,点的纵坐标为3,分别求得用k表示的BF、AE长,继而求得CF、CE长,从而求得结论.【详解】(1)是的中点,,点的坐标为,将点的坐标为代入得:∴,∴反比例函数的表达式;(2)点的横坐标为4,代入,,,,点的纵坐标为3,代入,,即,,,所以.【点睛】此题是反比例函数与几何的综合题,主要考查了待定系数法,矩形的性质,锐角三角函数,掌握反比例函数的性质是解本题的关键.22、(1)y=﹣x﹣1;(2)△AOB的面积为;(3)x<﹣4或0<x<3.【解析】(1)先根据A点的横坐标与B点的纵坐标都是3,求出A,B,再把A,B的值代入解析式即可解答(2)先求出C的坐标,利用三角形的面积公式即可解答(3)一次函数大于反比例函数即一次函数的图象在反比例函数的图象的上边时,对应的x的取值范围;【详解】(1)∵一次函数y=kx+b(k,b为常数,k≠0)的图象与反比例函数的图象交于A、B两点,且与x轴交于点C,与y轴交于点D,A点的横坐标与B点的纵坐标都是3,∴,解得:x=﹣4,y=﹣=﹣4,故B(﹣4,3),A(3,﹣4),把A,B点代入y=kx+b得:,解得:,故直线解析式为:y=﹣x﹣1;(2)y=﹣x﹣1,当y=0时,x=﹣1,故C点坐标为:(﹣1,0),则△AOB的面积为:×1×3+×1×4=;(3)不等式kx+b>﹣的解集为:x<﹣4或0<x<3.【点睛】此题考查反比例函数与一次函数的交点问题,解题关键在于把已知点代入解析式23、(1)见解析;(2)见解析【分析】(1)连接AD,则AD⊥BC,再由已知,可推出是的垂直平分线,再根据垂直平分线的性质即可得出结论.(2)连接OD,证明OD⊥DE即可.根据三角形中位线定理和平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年海南省建筑安全员《C证》考试题库
- 2025四川省建筑安全员《A证》考试题库
- 民航英语口语总复习课件
- 【大学课件】官方单据公务证书
- 专利申请实务
- 最小公倍数 比较课件
- 小古文-大禹治水课件
- 《展览品牌策划》课件
- 2025年中国男裤行业市场前景预测及投资战略研究报告
- 《慢性阻塞性肺疾患》课件
- 汽车租赁流程图
- “以案促改”心得体会
- 2025届高考语文复习:散文的结构与行文思路 课件
- 审计工作述职报告
- 安全事故现场处置方案(3篇)
- 广东省广州海珠区2023-2024学年八年级上学期期末物理试卷(含答案)
- 中国通 用技术集团招聘笔试题库
- 【MOOC】工程材料学-华中科技大学 中国大学慕课MOOC答案
- 就业招聘服务行业市场前瞻与未来投资战略分析报告
- 收购居间服务合同
- 银行贷款保证合同范本
评论
0/150
提交评论