版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
西安市重点中学2023年八上数学期末监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.式子有意义的条件是()A.x≠2 B.x>﹣2 C.x≥2 D.x>22.如图,等边三角形中,,有一动点从点出发,以每秒一个单位长度的速度沿着折线运动至点,若点的运动时间记作秒,的面积记作,则与的函数关系应满足如下图象中的()A. B. C. D.3.如图汽车标志中不是中心对称图形的是()A. B. C. D.4.若a+b=0,ab=11,则a2-ab+b2的值为()A.33 B.-33 C.11 D.-115.一个多边形截取一个角后,形成另一个多边形的内角和是1620°,则原来多边形的边数可能是()A.10,11,12 B.11,10C.8,9,10 D.9,106.将分式中的x,y的值同时扩大为原来的3倍,则分式的值()A.扩大6倍 B.扩大9倍 C.不变 D.扩大3倍7.甲、乙两名运动员同时从A地出发到B地,在直线公路上进行骑自行车训练.如图,反映了甲、乙两名自行车运动员在公路上进行训练时的行驶路程S(千米)与行驶时间t(小时)之间的关系,下列四种说法:①甲的速度为40千米/小时;②乙的速度始终为50千米/小时;③行驶1小时时,乙在甲前10千米;④甲、乙两名运动员相距5千米时,t=0.5或t=2或t=5.其中正确的个数有()A.1个 B.2个 C.3个 D.4个8.三角形的三边为a、b、c,则下列条件不能判断它是直角三角形的是()A.a:b:c=8:16:17 B. C. D.∠A=∠B+∠C9.等腰三角形的周长为12,则腰长a的取值范围是()A.3<a<6 B.a>3 C.4<a<7 D.a<610.已知:△ABC≌△DCB,若BC=10cm,AB=6cm,AC=7cm,则CD为()A.10cm B.7cm C.6cm D.6cm或7cm二、填空题(每小题3分,共24分)11.若,则的值为_________.12.化简:_____________.13.如果分式有意义,那么x的取值范围是____________.14.如图,△ABC中,∠ACB=90°,∠A=25°,将△ABC绕点C逆时针旋转至△DEC的位置,点B恰好在边DE上,则∠θ=_____度.15.计算:16.如图,在Rt△ABC中,已知∠C=90°,∠CAB与∠CBA的平分线交于点G,分别与CB、CA边交于点D、E,GF⊥AB,垂足为点F,若AC=6,CD=2,则GF=______17.分解因式:ab2﹣4ab+4a=.18.若等腰三角形的顶角为80°,则这个等腰三角形的底角为____度;三、解答题(共66分)19.(10分)解下列分式方程:20.(6分)计算:(1);(2).21.(6分)如图,四边形ABCD的顶点坐标为A(—5,1),B(—1,1),
C(—1,6),D(—5,4),请作出四边形ABCD关于x轴及y轴的对称图形,并写出坐标.22.(8分)某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用5天;(3)若甲、乙两队合作4天,余下的工程由乙队单独也正好如期完成.据上述条件解决下列问题:①规定期限是多少天?写出解答过程;②在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?23.(8分)尺规作图:如图,已知.(1)作的平分线;(2)作边的垂直平分线,垂足为.(要求:不写作法,保留作图痕迹).24.(8分)如图,在等腰中,,延长至点,连结,过点作于点,为上一点,,连结,.(1)求证:.(2)若,,求的周长.25.(10分)已知:如图,AB=DE,AB∥DE,BE=CF,且点B、E、C、F都在一条直线上,求证:AC∥DF.26.(10分)如图,在△ABC中,已知其周长为26㎝.(1)在△ABC中,用直尺和圆规作边AB的垂直平分线分别交AB、AC于点D,E(不写作法,但须保留作图痕迹).(2)连接EB,若AD为4㎝,求△BCE的周长.
参考答案一、选择题(每小题3分,共30分)1、D【解析】根据二次根式和分式有意义的条件可得x﹣2>0,再解即可.【详解】解:由题意得:x﹣2>0,解得:x>2,故选:D.【点睛】此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数,分式分母不为零.2、A【分析】根据等边三角形的性质结合点的运动,当P运动到B,△APC的面积即为△ABC的面积,求出即可判定图象.【详解】作CD⊥AB交AB于点D,如图所示:由题意,得当点P从A运动到B时,运动了4秒,△APC面积逐渐增大,此时,即当时,,即可判定A选项正确,B、C、D选项均不符合题意;当点P从B运动到C,△APC面积逐渐缩小,与从A运动到B时相对称,故选:A.【点睛】此题主要考查根据动点问题确定函数图象,解题关键是找出等量关系.3、B【分析】中心对称图形,是把一个图形绕一个点旋转180°后能和原来的图形重合.【详解】A、C、D中的汽车标志都满足中心对称图形的定义,都属于中心对称图形,而选项B中的汽车标志绕其圆心旋转180°后,不能和原来的图形重合,所以不是中心对称图形.故选B.【点睛】考核知识点:中心对称图形的识别.4、B【分析】根据完全平方公式的变形求解即可;【详解】,∵a+b=0,ab=11,∴原式=;故答案是B.【点睛】本题主要考查了完全平方公式的计算,准确计算是解题的关键.5、A【解析】先根据多边形的内角和公式(n-2)•180°求出截去一个角后的多边形的边数,再根据截去一个角后边数增加1,不变,减少1讨论得解.【详解】设多边形截去一个角的边数为n,则(n−2)⋅180°=1620°,解得n=11,∵截去一个角后边上可以增加1,不变,减少1,∴原来多边形的边数是10或11或12.故选A.【点睛】此题考查多边形内角与外角,解题关键在于掌握计算公式.6、B【分析】将原式中的x、y分别用3x、3y代替,化简,再与原分式进行比较.【详解】解:∵把分式中的x与y同时扩大为原来的3倍,∴原式变为:==9×,∴这个分式的值扩大9倍.故选:B.【点睛】本题考查了分式的基本性质.解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.7、B【分析】①甲的速度为1203=40,即可求解;
②t≤1时,乙的速度为501=50,t>1后,乙的速度为(120-50)(3-1)=35,即可求解;
③行驶1小时时,甲走了40千米,乙走了50千米,即可求解;
④甲的函数表达式为:,乙的函数表达式为:时,,时,,即可求解.【详解】①甲的速度为1203=40(千米/小时),故正确;
②时,乙的速度为501=50(千米/小时),后,乙的速度为(120-50)(3-1)=35(千米/小时),故错误;
③行驶1小时时,甲走了40千米,乙走了50千米,乙在甲前10千米处,故正确;
④由①②③得:甲的函数表达式为:,
乙的函数表达式为:当时,,当时,,当时,,解得(小时);当时,,解得(小时);当时,,解得(小时);∴甲、乙两名运动员相距5千米时,或或小时,故错误;
综上,①③正确,共2个,故选:B.【点睛】本题为一次函数应用题,考查了一次函数的应用、待定系数法求函数解析式以及解一元一次方程,解题的关键是:根据速度=路程÷时间求出速度;待定系数法求函数解析式;找出各线段所对应的函数表达式做差解方程.8、A【分析】根据勾股定理的逆定理和三角形的内角和定理进行分析,从而得到答案.【详解】解:A、∵82+162≠172,故△ABC不是直角三角形;B、∵,∴,故△ABC为直角三角形;C、∵a2=(b+c)(b-c),∴b2-c2=a2,故△ABC为直角三角形;D、∵∠A=∠B+∠C,∠A+∠B+∠C=180°,∴∠A=90°,故△ABC为直角三角形;故选:A【点睛】本题考查勾股定理的逆定理的应用,以及三角形内角和定理,判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断.9、A【分析】根据等腰三角形的腰长为a,则其底边长为:12﹣2a,根据三角形三边关系列不等式,求解即可.【详解】解:由等腰三角形的腰长为a,则其底边长为:12﹣2a.∵12﹣2a﹣a<a<12﹣2a+a,∴3<a<1.故选:A.【点睛】本题考查了三角形三边的关系,对任意一个三角形,任意两边之和大于第三边,任意两边之差小于第三边,灵活利用三角形三边的关系确定三角形边长的取值范围是解题的关键.10、C【分析】全等图形中的对应边相等.【详解】根据△ABC≌△DCB,所以AB=CD,所以CD=6,所以答案选择C项.【点睛】本题考查了全等,了解全等图形中对应边相等是解决本题的关键.二、填空题(每小题3分,共24分)11、1【分析】根据同底数幂相乘,底数不变,指数相加即可列出方程,求出m的值.【详解】解:∵∴∴解得:m=1故答案为:1.【点睛】此题考查的是幂的运算性质,掌握同底数幂相乘,底数不变,指数相加是解决此题的关键.12、【分析】根据分式的运算法则即可求解.【详解】原式=.故答案为:.【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.13、x≠1【解析】∵分式有意义,∴,即.故答案为.14、1.【解析】根据三角形内角和定理求出∠ABC,根据旋转变换的性质得到∠E=∠ABC=65°,CE=CB,∠ECB=∠DCA,计算即可.【详解】解:∵∠ACB=90°,∠A=25°,∴∠ABC=65°,由旋转的性质可知,∠E=∠ABC=65°,CE=CB,∠ECB=∠DCA,∴∠ECB=1°,∴∠θ=1°,故答案为1.【点睛】本题考查的是旋转变换的性质,掌握对应点与旋转中心所连线段的夹角等于旋转角、旋转前、后的图形全等是解题的关键.15、【分析】将第一项分母有理化,第二项求出立方根,第三项用乘法分配律计算后,再作加减法即可.【详解】解:原式===.【点睛】本题考查了二次根式的混合运算,解题的关键是掌握二次根式的性质和运算法则.16、【分析】过G作GM⊥AC于M,GN⊥BC于N,连接CG,根据角平分线的性质得到GM=GM=GF,根据三角形的面积公式列方程即可得到结论.【详解】解:过G作GM⊥AC于M,GN⊥BC于N,连接CG,
∵GF⊥AB,∠CAB与∠CBA的平分线交于点G,
∴GM=GM=GF,
在Rt△ABC中,∠C=90°,
∴S△ACD=AC•CD=AC•GM+CD•GN,
∴6×2=6•GM+2×GN,
∴GM=,
∴GF=,
故答案为【点睛】本题考查了角平分线的性质,三角形的面积,正确的作出辅助线是解题的关键.17、a(b﹣1)1.【解析】ab1﹣4ab+4a=a(b1﹣4b+4)﹣﹣(提取公因式)=a(b﹣1)1.﹣﹣(完全平方公式)故答案为a(b﹣1)1.18、50【分析】因为三角形的内角和是180度,又因为等腰三角形的两个底角相等,用“180-80=100”求出两个底角的度数,再用“100÷2”求出一个底角的度数;【详解】底角:(180°−80°)÷2=100°÷2=50°它的底角为50度故答案为:50.【点睛】此题考查三角形的内角和,等腰三角形的性质,解题关键在于利用内角和定理进行解答.三、解答题(共66分)19、x=-1【分析】根据分式方程的解题步骤求解即可.【详解】解:方程两边同时乘以(x-2)得:2x=(x-2)+1,解得:x=-1,经检验,x=-1是原方程的解,故原分式方程的解为:x=-1.【点睛】本题考查了分式方程的解法,熟练掌握分式方程的解题步骤是关键,注意最后检验根的存在性.20、(1);(2).【分析】(1)根据多项式乘多项式法则计算即可;(2)根据同底数幂的乘法和负指数幂的性质计算即可.【详解】解:(1)原式==(2)原式====【点睛】此题考查的是多项式乘多项式和幂的运算性质,掌握多项式乘多项式法则、同底数幂的乘法和负指数幂的性质是解决此题的关键.21、详见解析【解析】根据平面直角坐标系,分别找出点A、B、C、D关于x轴的对称点A′、B′、C′、D′的位置,然后顺次连接即可,根据关于x轴对称的点的横坐标相同,纵坐标互为相反数写出各点的坐标即可,根据平面直角坐标系,分别找出点A、B、C、D关于y轴的对称点A″、B″、C″、D″的位置,然后顺次连接即可,根据关于y轴对称的点的横坐标互为相反数,纵坐标相同写出各点的坐标即可.【详解】解:如图所示,四边形A′B′C′D′即为所求作的关于x轴的对称图形,A′(-5,-1),B′(-1,-1),C′(-1,-6),D′(-5,-4),
四边形A″B″C″D″即为所求作的关于y轴的对称图形,A″(5,1),B″(1,1),C″(1,6),D″(5,4).【点睛】本题主要考查了利用轴对称变换作图和关于x轴对称的点的横坐标相同,纵坐标互为相反数,关于y轴对称的点的横坐标互为相反数,纵坐标相同,解决本题的关键是准确找出各对称点的位置.22、规定期限1天;方案(3)最节省【分析】设这项工程的工期是x天,根据甲队单独完成这项工程刚好如期完成,乙队单独完成这项工程要比规定日期多用5天,若甲、乙两队合做4天,余下的工程由乙队单独做也正好如期完成以及工作量=工作时间×工作效率可列方程求解.再看费用情况:方案(1)、(3)不耽误工期,符合要求,可以求费用,方案(2)显然不符合要求.【详解】解:设规定期限x天完成,则有:,解得x=1.经检验得出x=1是原方程的解;答:规定期限1天.方案(1):1×1.5=30(万元)方案(2):25×1.1=27.5(万元),方案(3):4×1.5+1.1×1=28(万元).所以在不耽误工期的前提下,选第三种施工方案最节省工程款.所以方案(3)最节省.点睛:本题主要考查分式方程的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤,即①根据题意找出等量关系②列出方程③解出分式方程④检验⑤作答.注意:分式方程的解必须检验.23、(1)图见解析;(2)图见解析【分析】(1)根据角平分线的尺规作图方法即可;(2)根据线段垂直平分线的尺规作图方法即可.【详解】(1)AF为∠BAC的平分线;(2)MN为AC的垂直平分线,点E为垂足.【点睛】本题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《产品开发策划方案》课件
- 药物治疗周期性精神病-洞察分析
- 《白雪歌送武判官归京》课件完美版
- 虚拟世界安全标准制定-洞察分析
- 艺术品鉴定技术-洞察分析
- 《人物分析妙玉》课件
- 《的制作方法》课件
- 药物中毒救治新技术研究-洞察分析
- 碳排放监测技术-洞察分析
- 微服务容器化与JavaWeb性能提升研究-洞察分析
- 三D打印公开课
- 教学评一致性开题报告
- 福建省福州市2023-2024学年高一上学期期末质量检测数学试卷(解析版)
- xx教育电视台服务新高考志愿填报工作工作总结
- 压缩机检修方案
- 新药品推广策划方案
- 神经性梅毒的护理查房课件
- 地面深井泵房管理制度
- 2024年度中国低空经济报告
- 供电公司变电运维QC小组缩短变电站母排型接地线装设时间成果汇报书
- 四川省达州市2023年八年级上学期期末数学试题 附答案
评论
0/150
提交评论