西藏自治区拉萨市北京实验中学2023年高一数学第一学期期末含解析_第1页
西藏自治区拉萨市北京实验中学2023年高一数学第一学期期末含解析_第2页
西藏自治区拉萨市北京实验中学2023年高一数学第一学期期末含解析_第3页
西藏自治区拉萨市北京实验中学2023年高一数学第一学期期末含解析_第4页
西藏自治区拉萨市北京实验中学2023年高一数学第一学期期末含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

西藏自治区拉萨市北京实验中学2023年高一数学第一学期期末考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12小题,共60分)1.已知等腰直角三角形的直角边的长为4,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的表面积为()A. B.C. D.2.若,则a,b,c的大小关系是()A. B.C. D.3.已知偶函数在区间单调递减,则满足的x取值范围是A. B.C. D.4.下列函数中既是奇函数,又是其定义域上的增函数的是A. B.C. D.5.是边AB上的中点,记,,则向量A. B.C. D.6.已知,且,则下列不等式一定成立的是()A. B.C. D.7.下列函数中,在其定义域内既是增函数又是奇函数的是()A. B.C. D.8.已知函数若曲线与直线的交点中,相邻交点的距离的最小值为,则的最小正周期为A. B.C. D.9.设是周期为的奇函数,当时,,则A. B.C. D.10.已知,则x等于A. B.C. D.11.已知函数,,若存在实数,使得,则的取值范围是()A. B.C. D.12.已知,,则A. B.C. D.二、填空题(本大题共4小题,共20分)13.《九章算术》是我国古代内容极为丰富的数学名著,其中有这样一个问题:“今有宛田,下周三十步,径十六步.问为田几何?”其意思为:“有一块扇形的田,弧长为30步,其所在圆的直径为16步,问这块田的面积是多少平方步?”该问题的答案为___________平方步.14.给出下列命题:①存在实数,使;②函数是偶函数;③若是第一象限角,且,则;④是函数的一条对称轴方程以上命题是真命题的是_______(填写序号)15.定义为中的最大值,函数的最小值为,如果函数在上单调递减,则实数的范围为__________16.已知集合,若集合A有且仅有2个子集,则a的取值构成的集合为________.三、解答题(本大题共6小题,共70分)17.已知函数是定义在上的奇函数,且.(1)求函数解析式;(2)判断函数在上的单调性,并用定义证明;(3)解关于的不等式:.18.已知函数,不等式解集为,设(1)若存在,使不等式成立,求实数的取值范围;(2)若方程有三个不同的实数解,求实数的取值范围19.有一圆与直线相切于点,且经过点,求此圆的方程20.已知,,且.(1)求实数a的值;(2)求.21.已知函数.(1)若,求的定义域(2)若为奇函数,求a值.22.已知圆的方程为:(1)求圆的圆心所在直线方程一般式;(2)若直线被圆截得弦长为,试求实数的值;(3)已知定点,且点是圆上两动点,当可取得最大值为时,求满足条件的实数的值

参考答案一、选择题(本大题共12小题,共60分)1、D【解析】如图为等腰直角三角形旋转而成的旋转体这是两个底面半径为,母线长4的圆锥,故S=2πrl=2π××4=故答案为D.2、A【解析】根据题意,以及指数和对数的函数的单调性,来确定a,b,c的大小关系.【详解】解:是增函数,是增函数.,又,【点睛】本题考查三个数的大小的求法,考查指数函数和对数函数性质等基础知识,考查运算求解能力,是基础题.根据题意,构造合适的对数函数和指数函数,利用指数对数函数的单调性判定的范围是关键.3、D【解析】根据题意,结合函数的奇偶性与单调性分析可得,解不等式可得x的取值范围,即可得答案【详解】根据题意,偶函数在区间单调递减,则在上为增函数,则,解可得:,即x的取值范围是;故选D【点睛】本题考查函数奇偶性与单调性综合应用,注意将转化为关于x不等式,属于基础题4、C【解析】对于A,函数的偶函数,不符合,故错;对于B,定义域为,是非奇非偶函数,故错;对于C,定义域R,是奇函数,且是增函数,正确;对于D,是奇函数,但是是减函数,故错考点:本题考查函数的奇偶性和单调性点评:解决本题的关键是掌握初等函数的奇偶性和单调性5、C【解析】由题意得,∴.选C6、D【解析】对A,B,C,利用特殊值即可判断,对D,利用不等式的性质即可判断.【详解】解:对A,令,,此时满足,但,故A错;对B,令,,此时满足,但,故B错;对C,若,,则,故C错;对D,,则,故D正确.故选:D.7、D【解析】在定义域每个区间上为减函数,排除.是非奇非偶函数,排除.故选.8、D【解析】将函数化简,根据曲线y=f(x)与直线y=1的交点中,相邻交点的距离的最小值为,即ωx2kπ或ωx2kπ,k∈Z,建立关系,可得ω的值,即得f(x)的最小正周期【详解】解:函数f(x)=cosωx+sinωx,ω>0,x∈R化简可得:f(x)sin(ωx)∵曲线y=f(x)与直线y=1的相交,即ωx2kπ或ωx2kπ,k∈Z,∴()+2kπ=ω(x2﹣x1),令k=0,∴x2﹣x1,解得:ω∴y=f(x)的最小正周期T,故选D【点睛】本题考查了和差公式、三角函数的图象与性质、三角函数的方程的解法,考查了推理能力与计算能力,属于中档题9、A【解析】根据f(x)是奇函数可得f(﹣)=﹣f(),再根据f(x)是周期函数,周期为2,可得f()=f(﹣4)=f(),再代入0≤x≤1时,f(x)=2x(1﹣x),进行求解.【详解】∵设f(x)是周期为2的奇函数,∴f(﹣x)=﹣f(x),∵f(﹣)=﹣f(),∵T=2,∴f()=f(﹣4)=f(),∵当0≤x≤1时,f(x)=2x(1﹣x),∴f()=2×(1﹣)=,∴f(﹣)=﹣f()=﹣f()=﹣,故选A【点睛】此题主要考查周期函数和奇函数的性质及其应用,注意所求值需要利用周期进行调节,此题是一道基础题.10、A【解析】把已知等式变形,可得,进一步得到,则x值可求【详解】由题意,可知,可得,即,所以,解得故选A【点睛】本题主要考查了有理指数幂与根式的运算,其中解答中熟记有理指数幂和根式的运算性质,合理运算是解答的关键,着重考查了运算与求解能力,属于基础题.11、B【解析】根据给定条件求出函数的值域,由在此值域内解不等式即可作答.【详解】因函数的值域是,于是得函数的值域是,因存在实数,使得,则,因此,,解得,所以的取值范围是.故选:B12、A【解析】∵∴∴∴故选A二、填空题(本大题共4小题,共20分)13、120【解析】利用扇形的面积公式求解.【详解】由题意得:扇形弧长为30,半径为8,所以扇形的面积为:,故答案为:12014、②④【解析】根据三角函数的性质,依次分析各选项即可得答案.【详解】解:①因为,故不存在实数,使得成立,错误;②函数,由于是偶函数,故是偶函数,正确;③若,均为第一象限角,显然,故错误;④当时,,由于是函数的一条对称轴,故是函数的一条对称轴方程,正确.故正确的命题是:②④故答案为:②④15、【解析】根据题意,将函数写成分段函数的形式,分析可得其最小值,即可得的值,进而可得,由减函数的定义可得,解得的范围,即可得答案【详解】根据题意,,则,根据单调性可得先减后增,所以当时,取得最小值2,则有,则,因为为减函数,必有,解可得:,即m的取值范围为;故答案为.【点睛】本题考查函数单调性、函数最值的计算,关键是求出c的值.16、【解析】由题意得出方程有唯一实数解或有两个相等的实数解,然后讨论并求解当和时满足题意的参数的值.【详解】∵集合A有且仅有2个子集,可得A中仅有一个元素,即方程仅有一个实数解或有两个相等的实数解.当时,方程化为,∴,此时,符合题意;当时,则由,,令时解方程得,此时,符合题意,令时解方程得,此时符合题意;综上可得满足题意的参数可能的取值有0,-1,1,∴a的取值构成的集合为.故答案为:.【点睛】本题考查了由集合子集的个数求参数的问题,考查了分类讨论思想,属于一般难度的题.三、解答题(本大题共6小题,共70分)17、(1);(2)函数在上是增函数,证明见解析;(3).【解析】(1)根据奇函数的定义可求得的值,再结合已知条件可求得实数的值,由此可得出函数的解析式;(2)判断出函数在上是增函数,任取、且,作差,因式分解后判断的符号,即可证得结论成立;(3)由得,根据函数的单调性与定义域可得出关于实数的不等式组,由此可解得实数的取值范围.【小问1详解】解:因为函数是定义在上的奇函数,则,即,可得,则,所以,,则,因此,.【小问2详解】证明:函数在上是增函数,证明如下:任取、且,则,因为,则,,故,即.因此,函数在上是增函数.【小问3详解】解:因为函数是上的奇函数且为增函数,由得,由已知可得,解得.因此,不等式的解集为.18、(1);(2)【解析】(1)由不等式的解集为可知是方程的两个根,即可求出,根据的单调性求出其在的最大值,即可得出m的范围;(2)方程可化为,令,则有两个不同的实数解,,根据函数性质可列出不等式求解.【详解】(1)∵不等式的解集为∴,是方程的两个根∴,解得.∴则∴存在,使不等式成立,等价于在上有解,而在时单调递增,∴∴的取值范围为(2)原方程可化为令,则,则有两个不同的实数解,,其中,,或,记,则①,解得或②,不等式组②无实数解∴实数的取值范围为【点睛】本题考查一元二次不等式的解集与方程的根的关系,考查函数的单调性,考查利用函数性质解决方程解的情况,属于较难题.19、x2+y2-10x-9y+39=0【解析】法一:设出圆的方程,代入B点坐标,计算参数,即可.法二:设出圆的方程,结合题意,建立方程,计算参数,即可.法三:设出圆的一般方程,代入A,B坐标,建立方程,计算参数,即可.法四:计算CA直线方程,计算BP方程,计算点P坐标,计算半径和圆心坐标,建立圆方程,即可【详解】法一:由题意可设所求的方程为,又因为此圆过点,将坐标代入圆的方程求得,所以所求圆的方程为.法二:设圆的方程为,则圆心为,由,,,解得,所以所求圆的方程为.法三:设圆的方程为,由,,在圆上,得,解得,所以所求圆的方程为.法四:设圆心为,则,又设与圆的另一交点为,则的方程为,即.又因为,所以,所以直线的方程为.解方程组,得,所以所以圆心为的中点,半径为.所以所求圆的方程为.【点睛】考查了圆方程的计算方法,关键在于结合题意建立方程组,计算参数,即可,难度中等20、(1)(2)【解析】(1)根据同角三角函数关系求解或,结合角所在象限求出,从而得到答案;(2)在第一问的基础上,得到正弦和余弦,进而求出正切和余弦,利用诱导公式求出答案.【小问1详解】由题意得:,解得:或因为,所以,,解得:,综上:.【小问2详解】由(1)得:,,故,,故21、(1);(2).【解析】(1)根据定义域的求法,求得的定义域.(2)根据奇函数的定义域关于原点对称求得,判断为奇函数,从而确定的值.【详解】(1)依题意,,所以的定义域为.(2)依题意,,解得或,由于为奇函数,所以,解得,此时,,所以.22、(1);(2)或;(3).【解析】(1)配方得圆的标准方程,可得圆心坐标满足,消去可得圆心所在直线方程;(2)由弦长、半径结合勾

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论