版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省丽江市名校2023年八上数学期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.一次函数的图象与轴的交点坐标是()A. B. C. D.2.实数、、、在数轴上的位置如图所示,下列关系式不正确的是()A. B. C. D.3.如图,把一张长方形纸片沿对角线折叠,点的对应点为,与相交于点,则下列结论不一定成立的是()A.是等腰三角形 B.C.平分 D.折叠后的图形是轴对称图形4.(2016四川省成都市)平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A.(﹣2,﹣3) B.(2,﹣3) C.(﹣3,﹣2) D.(3,﹣2)5.下列实数为无理数的是()A.0.101 B. C. D.6.甲乙两地铁路线长约500千米,后来高铁提速,平均速度是原来火车速度的1.8倍,这样由甲到乙的行驶时间缩短了1.5小时;设原来火车的平均速度为千米/时,根据题意,可得方程()A. B.C. D.7.长为12、6、5、2的四根木条,选其中三根为边组成三角形,共有()选法A.4种 B.3种 C.2种 D.1种8.下列计算错误的是()A. B.C. D.9.满足下列条件的不是直角三角形的是A.三边之比为1:2: B.三边之比1::C.三个内角之比1:2:3 D.三个内角之比3:4:510.方程组的解中x与y的值相等,则k等于()A.-1 B.-2 C.-3 D.-411.如图,在Rt△PQR中,∠PRQ=90°,RP=RQ,边QR在数轴上.点Q表示的数为1,点R表示的数为3,以Q为圆心,QP的长为半径画弧交数轴负半轴于点P1,则P1表示的数是()A.-2 B.-2 C.1-2 D.2-112.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90° B.60° C.45° D.30°二、填空题(每题4分,共24分)13.现定义一种新的运算:,例如:,则不等式的解集为.14.若一个多边形的内角和等于720°,则从这个多边形的一个顶点引出对角线__________条.15.如图,,,,若,则的长为______.16.判定两个三角形全等除用定义外,还有几种方法,它们分别可以简写成______;______;______;______;______.17.分解因式:___________.18.如图,有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为3和15,则正方形A,B的面积之和为_____.三、解答题(共78分)19.(8分)(1)计算:(2)解不等式组:,并把不等式组的整数解写出来.20.(8分)(1)解分式方程:.(2)如图,与中,AC与BD交于点E,且,,求证:.21.(8分)如图,在中,,为上一点,,于点,于点,相交于点.(1)求证:;(2)若,求的长.22.(10分)如图,是等边三角形,、、分别是、、上一点,且.(1)若,求;(2)如图2,连接,若,求证:.23.(10分)如图,点B、E、C、F在同一条直线上,∠A=∠D,∠B=∠DEF,BE=CF.求证:AC=DF.24.(10分)观察下列等式:22﹣2×1=12+1①32﹣2×2=22+1②42﹣2×3=32+1③…(1)第④个等式为;(2)根据上面等式的规律,猜想第n个等式(用含n的式子表示,n是正整数),并说明你猜想的等式正确性.25.(12分)一辆卡车装满货物后,高4m、宽2.4m,这辆卡车能通过截面如图所示(上方是一个半圆)的隧道吗?26.如图,中,D是的中点,,过D点的直线交于F,交于G点,,交于点E,连结.证明:(1);(2).
参考答案一、选择题(每题4分,共48分)1、C【分析】一次函数y=2x+2的图象与x轴的交点的纵坐标是0,所以将y=0代入已知函数解析式,即可求得该交点的横坐标.【详解】令2x+2=0,解得,x=−1,则一次函数y=2x+2的图象与x轴的交点坐标是(−1,0);故选:C.【点睛】本题考查了一次函数图象上点的坐标特征.一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(−,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.2、D【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值解题即可.【详解】如下图:A.∵OA>OB,∴|a|>|b|,故A正确;B.,故B正确;C..|a-c|=|a+(-c)|=-a+c=c-a,故C正确;D.|d-1|=OD-OE=DE,|c-a|=|c+(-a)|=OC+OA,故D不正确.故答案为:D.【点睛】本题考查了实数与数轴,正确理解绝对值的意义是解题的关键.3、C【分析】由折叠前后的两个图形全等可以得出∠FBD=∠DBC,由长方形的性质可以得出AD∥BC,所以∠FDB=∠FBD=∠DBC,故得出是等腰三角形,根据折叠的性质可证的,折叠前后的两个图形是轴对称图形.【详解】解:∵∴∠FBD=∠DBC∵AD∥BC∴∠FDB=∠FBD=∠DBC∴是等腰三角形∴A选项正确;∵∴AB=ED在△AFB和△FED中∴∴B选项正确;折叠前后的图形是轴对称图形,对称轴为BD∴D选项正确;故选:C.【点睛】本题主要考查的是折叠前后的图形是轴对称图形并且全等,根据全等三角形的性质是解此题的关键.4、A【解析】解:点P(﹣2,3)关于x轴对称的点的坐标为(﹣2,﹣3).故选A.5、D【解析】由题意根据无理数的概念即无理数就是无限不循环小数,进行分析判断可得答案.【详解】解:A、0.101是有理数,B、=3是有理数,C、是有理数,D、是无限不循环小数即是无理数,故选:D.【点睛】本题考查的是无理数的概念、掌握算术平方根的计算方法是解题的关键.6、C【分析】设原来高铁的平均速度为x千米/时,则提速后的平均速度为1.8x,根据题意可得:由甲到乙的行驶时间比原来缩短了1.5小时,列方程即可.【详解】解:设原来火车的平均速度为x千米/时,则提速后的平均速度为1.8x,由题意得,.故选C.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.7、D【分析】根据题目给的四根木条进行分情况讨论,利用三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边,即可求解.【详解】解:选其中三根为边组成三角形有以下四种选法:12、6、5,12、6、2,12、5、2,6、5、2;能组成三角形的有:6、5、2只有一种.故选:D.【点睛】本题主要考查的三角形的形成条件,正确的运用三角形的形成条件,把题目进行分类讨论是解题的关键.8、B【分析】根据二次根式的加减法对A进行判断;根据平方差公式对B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【详解】A、,计算正确,不符合题意;B、,计算错误,符合题意;C、,计算正确,不符合题意;D、,计算正确,不符合题意;故选:B.【点睛】本题主要考查了二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则.9、D【解析】根据三角形内角和定理和勾股定理的逆定理判定是否为直角三角形.【详解】解:A、,符合勾股定理的逆定理,所以是直角三角形;B、,三边符合勾股定理的逆定理,所以是直角三角形;C、根据三角形内角和定理,求得第三个角为90°,所以此三角形是直角三角形;D、根据三角形内角和定理,求得各角分别为45°,60°,75°,所以此三角形不是直角三角形;故选:D.【点睛】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足,那么这个三角形就是直角三角形.也考查了三角形内角和定理.10、B【解析】分析:首先根据方程组的解法求出x和y的值,然后根据x=y得出k的值.详解:解方程组可得:,∵x与y的值相等,∴,解得:k=-2,故选B.点睛:本题主要考查的就是二元一次方程组的解法,属于基础题型.解二元一次方程组就是利用消元的思想来进行,可以加减消元,也可以代入消元.本题中在解方程组的时候一定要讲k看作是已知数,然后进行求解得出答案.11、C【分析】首先利用勾股定理计算出QP的长,进而可得出QP1的长度,再由Q点表示的数为1可得答案.【详解】根据题意可得QP==2,∵Q表示的数为1,∴P1表示的数为1-2.故选C.【点睛】此题主要考查了用数轴表示无理数,关键是利用勾股定理求出直角三角形的斜边长.12、C【解析】试题分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.试题解析:连接AC,如图:根据勾股定理可以得到:AC=BC=,AB=.∵()1+()1=()1.∴AC1+BC1=AB1.∴△ABC是等腰直角三角形.∴∠ABC=45°.故选C.考点:勾股定理.二、填空题(每题4分,共24分)13、【分析】根据新定义规定的运算规则列出不等式,解不等式即可得.【详解】根据题意知:(﹣1)1﹣1x≥0,﹣1x≥﹣4,解得:x≤1.故答案为:x≤1.【点睛】本题考查了解一元一次不等式,解题的关键是根据新定义列出关于x的不等式.14、1【解析】根据多边形的内角和公式求出边数,从而求出这个多边形从一个顶点出发引出的对角线的条数.【详解】设多边形的边数是n,则(n﹣2)•180°=720°,解得n=6,∴从这个多边形的一个顶点引出对角线是:6﹣1=1(条),故答案为1.【点睛】本题考查多边形的对角线,多边形内角与外角,关键是要先根据多边形的内角和公式求出边数.15、1【分析】作PE⊥OB于E,先根据角平分线的性质求出PE的长度,再根据平行线的性质得∠OPC=∠AOP,然后即可求出∠ECP的度数,再在Rt△ECP中利用直角三角形的性质即可求出结果.【详解】解:作PE⊥OB于E,如图所示:∵PD⊥OA,∴PE=PD=4,∵PC∥OA,∠AOP=∠BOP=15°,∴∠OPC=∠AOP=15°,∴∠ECP=15°+15°=30°,∴PC=2PE=1.故答案为:1.【点睛】本题考查了角平分线的性质定理、三角形的外角性质和30°角的直角三角形的性质,属于基本题型,作PE⊥OB构建角平分线的模型是解题的关键.16、SSS;AAS;SAS;.ASA;HL【解析】试题解析:判定两个三角形全等除用定义外,还有几种方法,它们分别可以简写成SSS;AAS;SAS;ASA;HL.17、【分析】原式利用平方差公式分解即可.【详解】,故答案为.【点睛】此题考查了因式分解-运用公式法,熟练掌握因式分解的方法是解本题的关键.18、1.【分析】设出正方形的边长,根据正方形的面积公式和已知阴影部分的面积构建一个方程组,可整体求出正方形A、B的面积之和为1.【详解】解:如图所示:设正方形A、B的边长分别为x,y,依题意得:,化简得:解得:x2+y2=1,∴SA+SB=x2+y2=1,故答案为1.【点睛】本题综合考查了完全平方公式的应用,正方形的面积公式,重点掌握完全平方公式的应用,难点是巧用变形求解两个正方形的面积和.三、解答题(共78分)19、(1);(2)0、1.【分析】(1)根据实数的性质即可化简求解;(2)分别求出各不等式的解集,再求出其公共解集.【详解】(1)解:原式==-9(2)解不等式组:,解不等式(1)得:解不等式(2)得:所以这个不等式组的解集是:这个不等式组的整数解是:0、1【点睛】此题主要考查实数的运算及不等式组的求解,解题的关键是熟知实数的性质及不等式的求解方法.20、(1);(2)见解析【分析】(1)根据解分式方程的一般步骤解方程即可;(2)利用AAS证出△ABE≌△DCE,从而得出EB=EC,然后根据等边对等角即可得出结论.【详解】解:(1)解得经检验:是原方程的解;(2)在△ABE和△DCE中∴△ABE≌△DCE∴EB=EC∴【点睛】此题考查的是解分式方程、全等三角形的判定及性质和等腰三角形的性质,掌握解分式方程的一般步骤、全等三角形的判定及性质和等边对等角是解决此题的关键.21、(1)证明见解析;(2).【分析】(1)先求出,根据30°所对的直角边是斜边的一半,可得,从而得出,然后根据等边对等角可得,然后利用外角的性质和等角对等边可证出,再利用等角对等边可得,从而得出,最后利用ASA即可证出;(2)先根据已知条件即可求出BD和CD,从而求出DF,再根据全等三角形的性质即可求出FC和FG,从而求出CG,最后根据30°所对的直角边是斜边的一半即可求出.【详解】(1)证明:连接,∵,∴,∵,∴,∴,∵,∴,∴,∵,∴,∵,∴,∵,∴,即,∴∵,∴,∴∵,∴,∵,∴,在和中∴;解:(2)∵,∴,∵,∴,∵,∴,∴,∴在中,,,∴.【点睛】此题考查的是直角三角形的性质、等腰三角形的判定及性质和全等三角形的判定及性质,掌握30°所对的直角边是斜边的一半、等边对等角和等角对等边和全等三角形的判定及性质是解决此题的关键.22、(1);(2)见解析【分析】(1)根据等边三角形的性质角度运算即可得出,从而得到即可;(2)由平行可知,再由三角形的内角和运算即可得.【详解】解:(1)∵是等边三角形.∴,∵,,∴,∴.(2)∵,∴,∵,,,,∴.【点睛】本题考查了等边三角形的性质及三角形内角和,解题的关键是掌握相应的性质,并对角度进行运算.23、证明见解析【解析】试题分析:要证明AC=DF成立,只需要利用AAS证明△ABC≌△DEF即可.试题解析:证明:∵BF=EC(已知),∴BF+FC=EC+CF,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS),∴AC=DF考点:全等三角形的判定与性质.24、(1)52﹣2×4=42+1;(2)(n+1)2﹣2n=n2+1,证明详见解析.【解析】(1)根据①②③的规律即可得出第④个等式;(2)第n个等式为(n+1)2﹣2n=n2+1,把等式左边的完全平方公式展开后再合并同类项即可得出右边.【详解】(1)∵22﹣2×1=12+1①32﹣2×2=22+1②42﹣2×3=32+1③∴第④个等式为52﹣2×4=42+1,故答案为:52﹣2×4=42+1,(2)第n个等式为(n+1)2﹣2n=n2+1.(n+1)2﹣2n=n2+2n+1﹣2n=n2+1.【点睛】本题主要考查了整式的运算,熟练掌握完全平方公式是解答本题的关键.25、这辆卡车
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 化粪池清掏服务方案
- 第二章 定量资料的统计描述课件
- 实验室废液安全处理管理制度
- 临床输血管理委员会会议纪要与年终工作总结
- 浙教版2021-2022学年度七年级数学上册模拟测试卷 (822)【含简略答案】
- 浙教版2021-2022学年度七年级数学上册模拟测试卷 (764)【含简略答案】
- 浙教版2021-2022学年度七年级数学上册模拟测试卷 (742)【含简略答案】
- Matlystatin-A-生命科学试剂-MCE
- 浙教版2021-2022学年度七年级数学上册模拟测试卷 (692)【含简略答案】
- 教师成长课程设计
- 教科版五年级上科学2.4火山喷发的成因及作用课件
- 园林设施维护方案
- 普希金《驿站长》阅读练习及答案
- 《生物多样性公约》及国际组织课件
- 通信工程企业安全生产资料、台账及现场检查表
- 柴油发电机房安全管理制度与柴油发电机房安全管理制度及操作规程
- 商务英语写作-外贸书信-建立业务关系
- 防暴队形训练
- 部编人教版九年级历史下册教案(全册)
- 新闻采访与写作(马工程笔记)
- 科斯:社会成本问题
评论
0/150
提交评论