版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.椭圆的参数方程一、知识回顾问题:你能仿此推导出椭圆的参数方程吗?这就是椭圆的参数方程1.参数方程是椭圆的参数方程.2.在椭圆的参数方程中,常数a、b分别是椭圆的长半轴长和短半轴长.a>b另外,
称为离心角,规定参数的取值范围是φOAMxyNB知识归纳椭圆的标准方程:椭圆的参数方程中参数φ的几何意义:xyO圆的标准方程:圆的参数方程:
x2+y2=r2θ的几何意义是∠AOP=θPAθ椭圆的参数方程:是∠AOX=φ,不是∠MOX=φ.【练习1】把下列普通方程化为参数方程.
(1)(2)(3)(4)把下列参数方程化为普通方程练习2:已知椭圆的参数方程为(是参数),则此椭圆的长轴长为(),短轴长为(),焦点坐标是(),离心率是()。42(,0)例1、如图,在椭圆x2/9+y2/4=1上求一点M,使M到直线l:x+2y-10=0的距离最小.xyOP分析1平移直线l
至首次与椭圆相切,切点即为所求.小结:借助椭圆的参数方程,可以将椭圆上的任意一点的坐标用三角函数表示,利用三角知识加以解决。例1、如图,在椭圆x2/9+y2/4=1上求一点M,使M到直线l:2x+y-11=0的距离最小.分析2例2.已知椭圆,求椭圆内接矩形面积的最大值.解:设椭圆内接矩形的一个顶点坐标为所以椭圆内接矩形面积的最大值为2ab.练习41、动点P(x,y)在曲线上变化,求2x+3y的最大值和最小值2、θ取一切实数时,连接A(4sinθ,6cosθ)和B(-4cosθ,6sinθ)两点的线段的中点轨迹是
.A.圆B.椭圆C.直线D.线段B设中点M(x,y)x=2sinθ-2cosθy=3cosθ+3sinθ小结(1)椭圆的参数方程与应用注意:椭圆参数与圆的参数方程中参数的几何意义不同。(2)椭圆与直线相交问题2.双曲线的参数方程•aoxy)MBA双曲线的参数方程探究:双曲线的参数方程b•aoxy)MBA双曲线的参数方程b⑵双曲线的参数方程可以由方程与三角恒等式
相比较而得到,所以双曲线的参数方程的实质是三角代换.说明:⑴这里参数叫做双曲线的离心角与直线OM的倾斜角不同.•aoxy)MBAb双曲线的参数方程例2、OBMAxy解:
双曲线的参数方程注意:双曲线还有什么参数方程?3.抛物
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年中国煤制烯烃行业发展趋势及需求潜力预测研究报告
- 2024-2030年中国油船市场运行动态与竞争格局分析研究报告
- 2024-2030年中国正己烷行业产销趋势及前景动态预测报告
- 2024-2030年中国无人机行业发展状况及投资策略分析研究报告
- 2024-2030年中国多缸圆锥破碎机行业未来趋势与发展前景预测报告
- 2024-2030年中国六面顶液压机行业需求趋势与发展前景预测报告
- 2024-2030年中国中频电疗机行业未来趋势与投资效益预测报告
- 2024-2030年中国3-巯丙基三甲氧基硅烷行业前景动态与产销需求预测报告
- 青海市气象资料课程设计
- 学校财产赔偿管理制度
- 工字钢承重表
- 浙江省湖州市安吉县2023-2024学年七年级第一学期期中科学阶段性检测试卷
- JTG-T 3652-2022 跨海钢箱梁桥大节段施工技术规程
- 骨科健康科普知识
- 工业园区风险分析
- 重症医学科主任述职报告
- 中国特色社会主义法律体系课件
- 高中数学奥赛辅导教材(共十讲)
- 警航无人机培训考试题库大全-下(判断题)
- 新型冠状病毒肺炎诊疗方案第八版
- 教学整本书阅读课《安徒生童话》(教案)部编版语文三年级上册
评论
0/150
提交评论