浙江省宁波市余姚中学2024届高一上数学期末统考试题含解析_第1页
浙江省宁波市余姚中学2024届高一上数学期末统考试题含解析_第2页
浙江省宁波市余姚中学2024届高一上数学期末统考试题含解析_第3页
浙江省宁波市余姚中学2024届高一上数学期末统考试题含解析_第4页
浙江省宁波市余姚中学2024届高一上数学期末统考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省宁波市余姚中学2024届高一上数学期末统考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知向量,且,则实数=A B.0C.3 D.2.设,则()A.a>b>c B.a>c>bC.c>a>b D.c>b>a3.函数,的图象大致是()A. B.C. D.4.已知两条直线,,且,则满足条件的值为A. B.C.-2 D.25.已知点A(1,2),B(3,1),则线段AB的垂直平分线的方程是()A. B.C. D.6.下列函数中哪个是幂函数()A. B.C. D.7.甲、乙二人参加某体育项目训练,近期的八次测试得分情况如图,则下列结论正确的是()A.甲得分的极差大于乙得分的极差 B.甲得分的75%分位数大于乙得分的75%分位数C.甲得分的平均数小于乙得分的平均数 D.甲得分的标准差小于乙得分的标准差8.设函数的图象为,关于点A(2,1)的对称图象为,若直线y=b与有且仅有一个公共点,则b的值为A.0 B.-4C.0或4 D.0或-49.定义在上的偶函数满足当时,,则A. B.C. D.10.已知幂函数的图象过点,则的值为A. B.C. D.11.已知幂函数为偶函数,则实数的值为()A.3 B.2C.1 D.1或212.某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)是()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.函数的定义域是______________14.计算__________15.三条直线两两相交,它们可以确定的平面有______个.16.计算____________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.在长方体ABCD-A1B1C1D1中,求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC18.有一圆与直线相切于点,且经过点,求此圆的方程19.已知向量函数(1)若时,不等式恒成立,求实数的取值范围;(2)当时,讨论函数的零点情况.20.已知函数(1)若,成立,求实数的取值范围;(2)证明:有且只有一个零点,且21.计算(1)-(2)22.已知函数在区间上有最大值5和最小值2,求、的值

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】由题意得,,因为,所以,解得,故选C.考点:向量的坐标运算.2、C【解析】分别求出的范围即可比较.【详解】,,,,,.故选:C.3、A【解析】判断函数的奇偶性和对称性,以及函数在上的符号,利用排除法进行判断即可【详解】解:函数,则函数是奇函数,排除D,当时,,则,排除B,C,故选:A【点睛】本题主要考查函数图象的识别和判断,利用函数奇偶性和对称性以及函数值的对应性,结合排除法是解决本题的关键.难度不大4、C【解析】根据两条直线l1:x+2ay﹣1=0,l2:x﹣4y=0,且l1∥l2,可得求得a=﹣2,故选C5、B【解析】因为线段的垂直平分线上的点到点,的距离相等,所以即:,化简得:故选6、A【解析】直接利用幂函数的定义判断即可【详解】解:幂函数是,,显然,是幂函数.,,都不满足幂函数的定义,所以A正确故选:A【点睛】本题考查了幂函数的概念,属基础题.7、B【解析】根据图表数据特征进行判断即可得解.【详解】乙组数据最大值29,最小值5,极差24,甲组最大值小于29,最小值大于5,所以A选项说法错误;甲得分的75%分位数是20,,乙得分的75%分位数17,所以B选项说法正确;甲组具体数据不易看出,不能判断C选项;乙组数据更集中,标准差更小,所以D选项错误故选:B8、C【解析】先设图像上任一点以及P关于点的对称点,根据点关于点对称的性质,用p的坐标表示的坐标,再把的坐标代入f(x)的解析式进行整理,求出图象的解析式,通过对解析式值域的分析,再结合直线y=b与有且仅有一个公共点,来确定未知量b的值。【详解】设图像上任一点,且P关于点的对称点,则有,解得,又点在函数的图像上,则有,那么图像的函数为,当时,,,当且仅当时取到等号,此时取到最小值4,直线y=b与只有一个公共点,故b=4,同理当时,,,即,此时取到最大值0,当且仅当x=3时取到等号,直线y=b与只有一个公共点,故b=0.综上,b的值为0或4.故选:C【点睛】利用基本不等式求出函数最值时,要注意函数定义域是否包含取等点,本题是一道函数综合题9、B【解析】分析:先根据得周期为2,由时单调性得单调性,再根据偶函数得单调性,最后根据单调性判断选项正误.详解:因为,所以周期为2,因为当时,单调递增,所以单调递增,因为,所以单调递减,因为,,所以,,,,选B.点睛:利用函数性质比较两个函数值或两个自变量的大小,首先根据函数的奇偶性转化为单调区间上函数值,最后根据单调性比较大小,要注意转化在定义域内进行.10、B【解析】利用幂函数图象过点可以求出函数解析式,然后求出即可【详解】设幂函数的表达式为,则,解得,所以,则.故答案为B.【点睛】本题考查了幂函数,以及对数的运算,属于基础题11、C【解析】由题意利用幂函数的定义和性质,得出结论【详解】幂函数为偶函数,,且为偶数,则实数,故选:C12、C【解析】先还原几何体为一直四棱柱,再根据柱体体积公式求结果.【详解】根据三视图可得几何体为一个直四棱柱,高为,底面为直角梯形,上下底分别为、,梯形的高为,因此几何体的体积为,选C.【点睛】先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】由题意可得,从而可得答案.【详解】函数的定义域满足即,所以函数的定义域为故答案为:14、5【解析】化简,故答案为.15、1或3【解析】利用平面的基本性质及推论即可求出.【详解】设三条直线为,不妨设直线,故直线与确定一个平面,(1)若直线在平面内,则直线确定一个平面;(2)若直线不在平面内,则直线确定三个平面;故答案为:1或3;16、5【解析】由分数指数幂的运算及对数的运算即可得解.【详解】解:原式,故答案为:5.【点睛】本题考查了分数指数幂的运算及对数的运算,属基础题.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)见解析;(2)见解析【解析】(1)推导出AB∥A1B1,由此能证明AB∥平面A1B1C.(2)推导出BC⊥AB,BC⊥BB1,从而BC⊥平面ABB1A1,由此能证明平面ABB1A1⊥平面A1BC【详解】证明:(1)在长方体ABCD-A1B1C1D1中,∵AB∥A1B1,且AB⊄平面A1B1C,A1B1⊂平面A1B1C,∴AB∥平面A1B1C(2)在长方体ABCD-A1B1C1D1中,∵BC⊥AB,BC⊥BB1,AB∩BB1=B,∴BC⊥平面ABB1A1,∵BC⊂平面A1BC,∴平面ABB1A1⊥平面A1BC【点睛】本题考查线面平行、面面垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查化归与转化思想,是基础题18、x2+y2-10x-9y+39=0【解析】法一:设出圆的方程,代入B点坐标,计算参数,即可.法二:设出圆的方程,结合题意,建立方程,计算参数,即可.法三:设出圆的一般方程,代入A,B坐标,建立方程,计算参数,即可.法四:计算CA直线方程,计算BP方程,计算点P坐标,计算半径和圆心坐标,建立圆方程,即可【详解】法一:由题意可设所求的方程为,又因为此圆过点,将坐标代入圆的方程求得,所以所求圆的方程为.法二:设圆的方程为,则圆心为,由,,,解得,所以所求圆的方程为.法三:设圆的方程为,由,,在圆上,得,解得,所以所求圆的方程为.法四:设圆心为,则,又设与圆的另一交点为,则的方程为,即.又因为,所以,所以直线的方程为.解方程组,得,所以所以圆心为的中点,半径为.所以所求圆的方程为.【点睛】考查了圆方程的计算方法,关键在于结合题意建立方程组,计算参数,即可,难度中等19、(1);(2)见解析【解析】(1)由题意得,结合不等式恒成立,建立m的不等式组,从而得到实数的取值范围;(2))令得:即,对m分类讨论即可得到函数的零点情况.【详解】(1)由题意得,,当时,∴,又恒成立,则解得:(2)令得:得:,则.由图知:当或,即或时,0个零点;当或,即或时,1个零点;当或,即或时,2个零点;当,即时,3个零点.综上:或时,0个零点;或时,1个零点;或时,2个零点;时,3个零点.【点睛】本题考查三角函数的图像与性质的应用,三角不等式恒成立问题,函数的零点问题及三角函数的化简,属于中档题.20、(1)(2)证明见解析.【解析】(1)把已知条件转化成大于在上的最小值即可解决;(2)先求导函数,判断出函数的单调区间,图像走势,再判断函数零点,隐零点问题重在转化.【小问1详解】由得,则在上单调递增,在上最小值为若,成立,则必有由,得故实数的取值范围为【小问2详解】在上单调递增,且恒成立,最小正周期,在上最小值为由此可知在恒为正值,没有零点.下面看在上的零点情况.,,则即在单调递增,,故上有唯一零点.综上可知,在上有且只有一个零点.令,则,令,则即在上单调递减,故有21、(1);(2).【解析】(1)综合利用指数对数运算法则运算;(2)利用对数的运算法则化简运算.【详解】解:(1)原式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论