版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中学位数与众数福建省厦门市逸夫中学2023-2024学年数学八上期末学业质量监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.在平面直角坐标系中,点关于轴对称的点的坐标为()A. B. C. D.2.如果m是的整数部分,则m的值为()A.1 B.2 C.3 D.43.在下列长度的各组线段中,能组成直角三角形的是()A.1,2,3 B.5,6,7 C.1,4,9 D.5,12,134.已知A,B两点关于轴对称,若点A坐标为(2,-3),则点B的坐标是()A.(2,-3) B.(-2,3) C.(-2,-3) D.(2,3)5.如图,点,分别在线段,上,与相交于点,已知,现添加一个条件可以使,这个条件不能是()A. B.C. D.6.如图,坐标平面上有P,Q两点,其坐标分别为(5,a),(b,7),根据图中P,Q两点的位置,则点(6-b,a-10)在()A.第一象限 B.第二象限C.第三象限 D.第四象限7.若数a关于x的不等式组恰有两个整数解,且使关于y的分式方程=﹣2的解为正数,则所有满足条件的整数a的值之和是()A.4 B.5 C.6 D.38.将点A(2,1)向右平移2个单位长度得到点A′,则点A′的坐标是()A.(0,1) B.(2,﹣1) C.(4,1) D.(2,3)9.若代数式在实数范围内有意义,则实数的取值范围为()A. B. C. D.10.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C. D.11.在平面直角坐标系中,下列各点在第二象限的是()A.(3,1)B.(3,-1)C.(-3,1)D.(-3,-1)12.下列各式可以用完全平方公式分解因式的是()A. B. C. D.二、填空题(每题4分,共24分)13.解方程:.14.如果方程有增根,那么______.15.计算:___________.16.在某中学举行的演讲比赛中,七年级5名参赛选手的成绩如下表所示,根据表中提供的数据,则3号选手的成绩为_____.选手1号2号3号4号5号平均成绩得分909589889117.若关于的方程组的解互为相反数,则k=_____.18.如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF,若∠ABE=20°,那么∠EFC′的度数为______.三、解答题(共78分)19.(8分)某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.(1)根据图示填写下表;班级
平均数(分)
中位数(分)
众数(分)
九(1)
85
85
九(2)
80
(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;(3)计算两班复赛成绩的方差.20.(8分)阅读下面的计算过程:①=②=③=④上面过程中(有或无)错误,如果有错误,请写出该步的代号.写出正确的计算过程.21.(8分)某电话公司开设了两种手机通讯业务,甲种业务:使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元;乙种业务:不交月租费,每通话1分钟,付话费0.6元(指市话).若一个月内通话x分钟,两种方式的费用分别为y1(元)和y2(元).(1)分别求出y1、y2与x之间的函数关系式.(2)根据每月可能的通话时间,作为消费者选用哪种缴费方式更实惠.22.(10分)解方程组:.23.(10分)计算:+(π﹣3.14)1.24.(10分)某工厂准备在春节前生产甲、乙两种型号的新年礼盒共80万套,两种礼盒的成本和售价如下表所示;甲乙成本(元/套)2528售价(元/套)3038(1)该工厂计划筹资金2150万元,且全部用于生产甲乙两种礼盒,则这两种礼盒各生产多少万套?(2)经过市场调查,该厂决定在原计划的基础上增加生产甲种礼盒万套,增加生产乙种礼盒万套(,都为正整数),且两种礼盒售完后所获得的总利润恰为690万元,请问该工厂有几种生产方案?并写出所有可行的生产方案.(3)在(2)的情况下,设实际生产的两种礼盒的总成本为万元,请写出与的函数关系式,并求出当为多少时成本有最小值,并求出成本的最小值为多少万元?25.(12分)如图,为等边三角形,,、相交于点,于点,,.(1)求证:;(2)求的长.26.某工厂计划生产甲、乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元.设该工厂生产了甲产品x(吨),生产甲、乙两种产品获得的总利润为y(万元).(1)求y与x之间的函数表达式;(2)若每生产1吨甲产品需要A原料0.25吨,每生产1吨乙产品需要A原料0.5吨.受市场影响,该厂能获得的A原料至多为1000吨,其它原料充足.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.
参考答案一、选择题(每题4分,共48分)1、B【解析】根据关于y轴对称的点横坐标互为相反数,纵坐标相等进行解答即可.【详解】∵(m、n)关于y轴对称的点的坐标是(-m、n),∴点M(-3,-6)关于y轴对称的点的坐标为(3,-6),故选B.【点睛】本题考查了关于y轴对称的点的坐标特征,熟练掌握关于y轴对称的点的坐标特征是解题的关键.2、C【分析】找到所求的无理数在哪两个和它接近的整数之间,即可得出所求的无理数的整数部分.【详解】解:∵9<15<16,∴3<<4,∴m=3,故选:C.【点睛】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.3、D【分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、因为12+22≠32,所以不能组成直角三角形;
B、因为52+62≠72,所以不能组成直角三角形;
C、因为12+42≠92,所以不能组成直角三角形;
D、因为52+122=132,所以能组成直角三角形.
故选:D.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.4、D【分析】根据关于x轴对称的两点的横坐标相同,纵坐标互为相反数即可得答案.【详解】∵A,B两点关于轴对称,点A坐标为(2,-3),∴点B坐标为(2,3),故选:D.【点睛】本题考查了关于x轴对称的点的坐标特征,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数.5、C【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理ASA、AAS、SAS添加条件,逐一证明即可.【详解】∵AB=AC,∠A为公共角∴A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;B、如添,利用AAS即可证明△ABE≌△ACD;C、如添,因为SSA不能证明△ABE≌△ACD,所以此选项不能作为添加的条件;D、如添,利用SAS即可证明△ABE≌△ACD.故选:C.【点睛】本题考查全等三角形的判定定理的掌握和理解,熟练掌握全等三角形的判定定理是解题关键.6、D【解析】∵(5,a)、(b,7),
∴a<7,b<5,
∴6-b>0,a-10<0,
∴点(6-b,a-10)在第四象限.
故选D.7、B【分析】解不等式组得,根据其有两个整数解得出,解之求得的范围;解分式方程求出,由解为正数且分式方程有解得出,解之求得的范围;综合以上的范围得出的整数值,从而得出答案.【详解】解:解不等式,得:,解不等式,得:,不等式组恰有两个整数解,,解得,解分式方程得,经检验,y=2a-1是原分式方程的解,由题意知,解得且,则满足,且且的所有整数有2、3,所以所有满足条件的整数的值之和是,故选:.【点睛】本题主要考查一元一次不等式组的整数解,解题的关键是掌握根据不等式组整数解的个数得出的范围,根据分式方程解的情况得出的另一个范围.8、C【分析】把点(2,1)的横坐标加2,纵坐标不变即可得到对应点的坐标.【详解】解:∵将点(2,1)向右平移2个单位长度,∴得到的点的坐标是(2+2,1),即:(4,1),故选:C.【点睛】本题主要考查了坐标系中点的平移规律,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.9、D【分析】直接利用分式有意义的条件得出答案.【详解】解:∵代数式在实数范围内有意义,∴实数a的取值范围为:a-1≠0,解得:a≠1.故选:D.【点睛】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.10、A【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、是轴对称图形,故本选项符合题意;
B、不是轴对称图形,故本选项不符合题意;
C、不是轴对称图形,故本选项不符合题意;
D、不是轴对称图形,故本选项不符合题意.
故选A.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.11、C【解析】由第二象限中坐标特点为,横坐标为负,纵坐标为正,由此即可判断.【详解】A.(3,1)位于第一象限;B.(3,-1)位于第四象限;C.(-3,1)位于第二象限;D.(-3,-1)位于第三象限;故选C.【点睛】此题主要考察直角坐标系的各象限坐标特点.12、D【分析】可以用完全平方公式分解因式的多项式必须是完全平方式,符合结构,对各选项分析判断后利用排除法求解.【详解】解:A、两平方项符号相反,不能用完全平方公式,故本选项错误;B、缺少乘积项,不能用完全平方公式,故本选项错误;C、乘积项不是这两数积的两倍,不能用完全平方公式,故本选项错误;D、,故本选项正确;故选:D.【点睛】本题考查了用完全公式进行因式分解的能力,解题的关键了解完全平方式的结构特点,准确记忆公式,会根据公式的结构判定多项式是否是完全平方式.二、填空题(每题4分,共24分)13、方程无解【分析】先去分母得到整式方程,再解所得的整式方程即可,注意解分式方程最后要写检验.【详解】解:去分母得解得经检验是原方程的增根∴原方程无解.考点:解分式方程点评:解方程是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.14、-1【解析】分式方程去分母转化为整式方程,把代入整式方程求出m的值即可.【详解】解:去分母得:,由分式方程有增根,得到,代入整式方程得:,故答案为【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.15、-20【分析】先计算乘方,再计算乘法,即可得到答案.【详解】==-20,故答案为:-20.【点睛】此题考查整式的混合运算,首先计算乘方,再计算乘法,最后计算加减法.16、1【分析】先求出5名参赛选手的总成绩,再减去其它选手的成绩,即可得出3号选手的成绩.【详解】解:∵观察表格可知5名选手的平均成绩为91分,∴3号选手的成绩为91×5﹣90﹣95﹣89﹣88=1(分);故答案为:1.【点睛】此题考查了算术平均数,掌握算术平均数的计算方法是解题的关键.17、【分析】由方程组的解互为相反数,得到,代入方程组计算即可求出的值.【详解】由题意得:,
代入方程组得,由①得:③,
③代入②得:,
解得:,
故答案为:.【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.18、125°【详解】解:Rt△ABE中,∠ABE=20°,∴∠AEB=70°,由折叠的性质知:∠BEF=∠DEF,而∠BED=180°﹣∠AEB=110°,∴∠BEF=55°,易知∠EBC=∠D=∠BC′F=∠C=90°,∴BE∥C′F,∴∠EFC′=180°﹣∠BEF=125°.故答案为125°.【点睛】本题考查翻折变换(折叠问题).三、解答题(共78分)19、(6)填表见解析.(6)九(6)班成绩好些;(6)70,6.【解析】试题分析:(6)分别计算九(6)班的平均分和众数填入表格即可.(6)根据两个班的平均分相等,可以从中位数的角度去分析这两个班级的成绩;(6)分别将两组数据代入题目提供的方差公式进行计算即可.试题解析:(6)(70+600+600+76+80)=86分,众数为600分中位数为:86分;班级
平均数(分)
中位数(分)
众数(分)
九(6)
86
86
86
九(6)
86
80
600
(6)九(6)班成绩好些,因为两个班级的平均数相同,九(6)班的中位数高,所以在平均数相同的情况下中位数高的九(6)班成绩好些;(6)S66=[(76-86)6+(80-86)6+6×(86-86)6+(600-86)6]=70,S66=[(70-86)6+(600-86)6+(600-86)6+(76-86)6+(80-86)6]=6.考点:6.方差;6.条形统计图;6.算术平均数;6.中位数;6.众数.20、有,②,过程见解析【分析】第一步通分正确,第二步少分母,这是不正确的,分母只能通过与分子约分化去.【详解】解:有错误;②;正确的计算过程是:====【点睛】本题考查了异分母分式的加减,熟练掌握运算法则是解题的关键.21、(1)、y1=50+0.4x,y2=0.6x;(2)、当通话时间小于250分钟时,选择乙种通信业务更优惠;当通话时间等于250分钟时,选择两种通信业务一样;当通话时间大于250分钟时,选择甲种通信业务更优惠.【分析】(1)根据两种费用的缴费方式分别列式计算即可得解;(2)先写出两种缴费方式的函数关系式,再分情况列出不等式然后求解即可.【详解】解:(1)由题意可知:y1=50+0.4x,y2=0.6x;(2)y1=50+0.4x,y2=0.6x,当y1>y2即50+0.4x>0.6x时,x<250,当y1=y2即50+0.4x=0.6x时,x=250,当y1<y2即50+0.4x<0.6x时,x>250,所以,当通话时间小于250分钟时,选择乙种通信业务更优惠,当通话时间等于250分钟时,选择两种通信业务一样,当通话时间大于250分钟时,选择甲种通信业务更优惠.考点:一次函数的应用.22、【分析】运用加减消元法求解即可.【详解】解:①②得,解得.将代入②得,解得原方程组的解为【点睛】此题考查了解二元一次方程组,解二元一次方程组有两种方法:代入消元法和加减消元法.23、.【分析】直接利用零指数幂的性质以及立方根和算术平方根的定义,进行计算,即可求解.【详解】原式=﹣4+1=﹣.【点睛】本题主要考查实数的加减混合运算,掌握零指数幂的性质以及立方根和算术平方根的定义,是解题的关键.24、(1)甲礼盒生产30万套,乙礼盒生产50万套;(2)方案如下:①;②;③;(3)时,最小值为万元.【分析】(1)设甲礼盒生产万套,乙礼盒生产万套,从而列出相应的方程,即可解答本题;(2)根据表格可以求得A的利润与B的利润,从而可以求得总利润,写出相应的关系式,再利用正整数的特性得出可行的生产方案;(3)根据表格的数据,列出相应的函数关系式,利用一次函数的增减性即可成本的最小值.【详解】(1)设甲礼盒生产万套,乙礼盒生产万套,依题意得:,解得:,答:甲礼盒生产30万套,乙礼盒生产50万套;(2)增加生产后,甲万套,乙万套,依题意得:,化简得:,∴方案如下:;;;答:有三种方案,,,;(3)依题意得:,化简得:,∵,∴随的增大而增大,∴取最小值时最小,∴时,(万元).答:当时,最小值为万元.【点睛】本题考查一次函数的应用,一元一次方程的应用,解题的关键是根据题意找到等量关系,列出相应的方程和一次函数关系式,利用数学中分类讨论的思想对问题进行解答.25、(1)见解析;(2)7.【分析】(1)根据等边三角形的三条边都相
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年工地食堂品牌合作承包合同
- 光端机购买合同范例
- 卫浴洁具购买合同模板
- 上海国内旅游合同模板
- 2024安防监控系统施工劳务分包合同
- 04年国际货物买卖合同范本
- 2024年广告发布合同模板及标的描述
- 2024年塑料制品出口市场开发与合作合同
- 2024年婚后财产管理协议书
- 简笔画基础知识单选题100道及答案解析
- 火电厂信息化建设规划方案
- 技改项目报告
- “中信泰富”事件的反思
- 工业机器人系统运维知识竞赛题库及答案(100题)
- 智慧农贸市场解决方案
- 徐州市2023-2024学年九年级上学期期末道德与法治试卷(含答案解析)
- 北师大版二年级上册100以内加减法混合运算大全500题及答案
- 多源数据融合车辆定位系统
- 质量管理五大工具之培训课件
- 销售到营销的转变
- 骨质疏松患者的护理干预与教育
评论
0/150
提交评论