北师大版八年级下册数学《24第1课时一元一次不等式的解法》教案_第1页
北师大版八年级下册数学《24第1课时一元一次不等式的解法》教案_第2页
北师大版八年级下册数学《24第1课时一元一次不等式的解法》教案_第3页
北师大版八年级下册数学《24第1课时一元一次不等式的解法》教案_第4页
北师大版八年级下册数学《24第1课时一元一次不等式的解法》教案_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北师大版八年级下册数学《2.4第1课时一元一次不等式的解法》教案_范文写作网

.s_r_0_2{font-family:TimesNewRoman,宋体;}.s_r_1_2{font-size:14px;}.s_p_2_2{text-align:justify;}.s_sn_3_rId_a_2{styleName:Normal;}.s_r_4_rId_a_2{font-size:14px;}.s_p_5_rId_a_2{text-align:justify;}.s_sn_6_rId_1_2{styleName:heading1;}.s_r_7_rId_1_2{font-size:29.333333333333px;}.s_p_8_rId_1_2{line-height:200%;padding-bottom:22px;padding-top:22.666666666667px;outlineLvl:0;}.s_sn_9_rId_3_2{styleName:heading3;}.s_r_10_rId_3_2{font-size:21.333333333333px;}.s_p_11_rId_3_2{line-height:173.33333333333%;padding-bottom:17.333333333333px;padding-top:17.333333333333px;outlineLvl:2;}.s_sn_12_rId_a0_2{styleName:DefaultParagraphFont;}.s_sn_13_rId_a1_2{styleName:NormalTable;}.s_tbl_14_rId_a1_2{margin-left:0px;cellpadding:0px7px0px7px;}.s_sn_15_rId_a3_2{styleName:Hyperlink;}.s_r_16_rId_a3_2{color:#000000;text-decoration:none;}.s_sn_17_rId_a4_2{styleName:footer;}.s_r_18_rId_a4_2{font-size:12px;}.s_p_19_rId_a4_2{text-align:left;}.s_sn_20_rId_a5_2{styleName:header;}.s_r_21_rId_a5_2{font-size:12px;}.s_p_22_rId_a5_2{border-bottom:1pxsolid#000000;text-align:center;}.s_sn_23_rId_a6_2{styleName:PlainText;}.s_r_24_rId_a6_2{font-family:宋体,CourierNew;font-size:14px;}.r_0_2{font-family:TimesNewRoman;}.p_0_2{text-indent:2em;}.r_1_2{font-family:TimesNewRoman;}.r_2_2{font-family:TimesNewRoman;vertical-align:bottom;}.p_1_2{text-indent:2em;text-align:center;}.r_3_2{font-family:TimesNewRoman,黑体;}.r_4_2{font-family:黑体;}.r_5_2{font-family:TimesNewRoman,黑体;text-decoration:underline;}.r_6_2{font-family:TimesNewRoman;font-style:italic;}.r_7_2{font-family:TimesNewRoman;font-style:italic;}.r_8_2{font-family:TimesNewRoman;}.r_9_2{font-family:TimesNewRoman;vertical-align:super;}.r_10_2{font-family:楷体_GB2312;}.r_11_2{font-family:TimesNewRoman,楷体_GB2312;}.r_12_2{font-family:TimesNewRoman,楷体_GB2312;}.r_13_2{font-family:楷体_GB2312;}.r_14_2{font-family:TimesNewRoman,仿宋_GB2312;}.r_15_2{font-family:仿宋_GB2312;}.r_16_2{font-family:仿宋_GB2312,TimesNewRoman;}.r_17_2{font-family:仿宋_GB2312,TimesNewRoman;}.r_18_2{font-family:TimesNewRoman,黑体;text-decoration:underline;}.r_19_2{font-family:TimesNewRoman;font-style:italic;vertical-align:super;}.r_20_2{font-family:TimesNewRoman;vertical-align:super;}.r_21_2{font-family:TimesNewRoman,楷体_GB2312;font-style:italic;}.r_22_2{font-family:TimesNewRoman,楷体_GB2312;vertical-align:super;}.r_23_2{font-family:TimesNewRoman,楷体_GB2312;font-style:italic;vertical-align:super;}.r_24_2{font-family:TimesNewRoman,楷体_GB2312;vertical-align:super;}.r_25_2{font-family:TimesNewRoman,楷体_GB2312;font-style:italic;}.r_26_2{font-family:TimesNewRoman,黑体;}.r_27_2{font-family:楷体_GB2312,TimesNewRoman;}.r_28_2{font-family:TimesNewRoman,仿宋_GB2312;font-style:italic;}

1.理解一元一次不等式、不等式的解集、解不等式等概念;

2.把握一元一次不等式的解法.(重点,难点)

一、情境导入

1.什么叫一元一次方程?

2.解一元一次方程的一般步骤是什么?要留意什么?

3.假如把一元一次方程中的等号改为不等号,怎样求解?

二、合作探究

探究点一:一元一次不等式的概念

【类型一】一元一次不等式的识别

以下不等式中,是一元一次不等式的是()

A.5x-2>0B.-3<2+

C.6x-3y≤-2D.y2+1>2

解析:选项A是一元一次不等式,选项B中含未知数的项不是整式,选项C中含有两个未知数,选项D中未知数的次数是2,应选项B,C,D都不是一元一次不等式,所以选A.

方法总结:假如一个不等式是一元一次不等式,必需满意三个条件:①含有一个未知数,②未知数的最高次数为1,③不等号的两边都是整式.

【类型二】依据一元一次不等式的概念求值

已知-x2a-1+5>0是关于x的一元一次不等式,则a的值是________.

解析:由-x2a-1+5>0是关于x的一元一次不等式得2a-1=1,计算即可求出a的值,故a=1.

方法总结:利用一元一次不等式的概念列出相应的方程求解即可.留意:假如未知数的系数中有字母,要检验此系数可不行能为零.

探究点二:一元一次不等式的解法

【类型一】一元一次不等式的解或解集

以下说法:①x=0是2x-1<0的一个解;②x=-3不是3x-2>0的解;③-2x+1<0的解集是x>2.其中正确的个数是()

A.0个B.1个

C.2个D.3个

解析:①x=0时,2x-1<0成立,所以x=0是2x-1<0的一个解;②x=-3时,3x-2>0不成立,所以x=-3不是3x-2>0的解;③-2x+1<0的解集是x>,所以不正确.应选C.

方法总结:推断一个数是不是不等式的解,只要把这个数代入不等式,看是否成立.推断一个不等式的解集是否正确,可把这个不等式化为“x>a”或“x<a”的形式,再进展比拟即可.

.s_r_0_3{font-family:TimesNewRoman,宋体;}.s_r_1_3{font-size:14px;}.s_p_2_3{text-align:justify;}.s_sn_3_rId_a_3{styleName:Normal;}.s_r_4_rId_a_3{font-size:14px;}.s_p_5_rId_a_3{text-align:justify;}.s_sn_6_rId_1_3{styleName:heading1;}.s_r_7_rId_1_3{font-size:29.333333333333px;}.s_p_8_rId_1_3{line-height:200%;padding-bottom:22px;padding-top:22.666666666667px;outlineLvl:0;}.s_sn_9_rId_3_3{styleName:heading3;}.s_r_10_rId_3_3{font-size:21.333333333333px;}.s_p_11_rId_3_3{line-height:173.33333333333%;padding-bottom:17.333333333333px;padding-top:17.333333333333px;outlineLvl:2;}.s_sn_12_rId_a0_3{styleName:DefaultParagraphFont;}.s_sn_13_rId_a1_3{styleName:NormalTable;}.s_tbl_14_rId_a1_3{margin-left:0px;cellpadding:0px7px0px7px;}.s_sn_15_rId_a3_3{styleName:Hyperlink;}.s_r_16_rId_a3_3{color:#000000;text-decoration:none;}.s_sn_17_rId_a4_3{styleName:footer;}.s_r_18_rId_a4_3{font-size:12px;}.s_p_19_rId_a4_3{text-align:left;}.s_sn_20_rId_a5_3{styleName:header;}.s_r_21_rId_a5_3{font-size:12px;}.s_p_22_rId_a5_3{border-bottom:1pxsolid#000000;text-align:center;}.s_sn_23_rId_a6_3{styleName:PlainText;}.s_r_24_rId_a6_3{font-family:宋体,CourierNew;font-size:14px;}.r_0_3{font-family:黑体;}.p_0_3{text-indent:2em;}.r_1_3{font-family:TimesNewRoman,黑体;}.r_2_3{font-family:TimesNewRoman,黑体;text-decoration:underline;}.r_3_3{font-family:TimesNewRoman,黑体;text-decoration:underline;}.r_4_3{font-family:TimesNewRoman;}.r_5_3{font-family:TimesNewRoman;}.r_6_3{font-family:TimesNewRoman;vertical-align:bottom;}.r_7_3{font-family:TimesNewRoman;font-style:italic;}.r_8_3{font-family:TimesNewRoman;}.r_9_3{font-family:楷体_GB2312;}.r_10_3{font-family:TimesNewRoman,楷体_GB2312;}.p_1_3{text-indent:2em;text-align:center;}.r_11_3{font-family:TimesNewRoman;vertical-align:bottom;}.r_12_3{font-family:TimesNewRoman,仿宋_GB2312;}.r_13_3{font-family:仿宋_GB2312;}.r_14_3{font-family:TimesNewRoman,楷体_GB2312;font-style:italic;}.r_15_3{font-family:楷体_GB2312;}.r_16_3{font-family:TimesNewRoman;font-style:italic;}【类型二】解一元一次不等式

解以下一元一次不等式,并在数轴上表示:

(1)2(x+)-1≤-x+9;

(2)-1>.

解析:根据解一元一次不等式的根本步骤求解:去分母、去括号、移项、合并同类项、两边都除以未知数的系数.

解:(1)去括号,得2x+1-1≤-x+9,

移项、合并同类项,得3x≤9,

两边都除以3,得x≤3;

(2)去分母,得3(x-3)-6>2(x-5),

去括号,得3x-9-6>2x-10,

移项,得3x-2x>-10+9+6,

合并同类项,得x>5.

方法总结:解一元一次不等式的根本步骤:去分母、去括号、移项、合并同类项、两边都除以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论