云南省广南县二中2024届数学高一下期末达标测试试题含解析_第1页
云南省广南县二中2024届数学高一下期末达标测试试题含解析_第2页
云南省广南县二中2024届数学高一下期末达标测试试题含解析_第3页
云南省广南县二中2024届数学高一下期末达标测试试题含解析_第4页
云南省广南县二中2024届数学高一下期末达标测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省广南县二中2024届数学高一下期末达标测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设、、为平面,为、、直线,则下列判断正确的是()A.若,,,则B.若,,,则C.若,,,则D.若,,,则2.圆的圆心坐标和半径分别为()A.,2 B.,2 C.,4 D.,43.已知向量,满足,,,则与的夹角为()A. B. C. D.4.在中,角,,所对的边为,,,且为锐角,若,,,则()A. B. C. D.5.等差数列前项和为,满足,则下列结论中正确的是()A.是中的最大值 B.是中的最小值C. D.6.已知等比数列,若,则()A. B. C.4 D.7.直线经过点和,则直线的倾斜角为()A. B. C. D.8.已知是奇函数,且.若,则()A.1 B.2 C.3 D.49.已知圆,设平面区域,若圆心,且圆与轴相切,则的最大值为()A.5 B.29 C.37 D.4910.若,且,则下列不等式一定成立的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.不等式的解集为_______________.12.在正方体中,是棱的中点,则异面直线与所成角的余弦值为__________.13.已知,,若,则____14.已知圆锥的高为,体积为,用平行于圆锥底面的平面截圆锥,得到的圆台体积是,则该圆台的高为_______.15.如图,正方形中,分别为边上点,且,,则________.16.在中,角的对边分别为,若,则_______.(仅用边表示)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图已知平面,,,,,,点,分别为,的中点.(1)求证://平面;(2)求直线与平面所成角的大小.18.已知函数(,)为奇函数,且相邻两对称轴间的距离为.(1)当时,求的单调递减区间;(2)将函数的图象沿轴方向向右平移个单位长度,再把横坐标缩短到原来的(纵坐标不变),得到函数的图象.当时,求函数的值域.19.函数在同一个周期内,当时,取最大值1,当时,取最小值-1.(1)求函数的单调递减区间.(2)若函数满足方程,求在内的所有实数根之和.20.已知向量是夹角为的单位向量,,(1)求;(2)当m为何值时,与平行?21.在中,角,,所对的边分别为,,,且.(Ⅰ)求角的大小;(Ⅱ)若的面积为,其外接圆的半径为,求的周长.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

根据线面、面面有关的定理,对四个选项逐一分析,由此得出正确选项.【题目详解】A选项不正确,因为根据面面垂直的性质定理,需要加上:在平面内或者平行于,这个条件,才能判定.B选项不正确,因为可能平行于.C选项不正确,因为当时,或者.D选项正确,根据垂直于同一条直线的两个平面平行,得到,直线,则可得到.综上所述,本小题选D.【题目点拨】本小题主要考查空间线面、面面位置关系有关命题真假性的判断,属于基础题.2、B【解题分析】试题分析:,所以圆心坐标和半径分别为(2,0)和2,选B.考点:圆标准方程3、B【解题分析】

将变形解出夹角的余弦值,从而求出与的夹角.【题目详解】由得,即又因为,所以,所以,故选B.【题目点拨】本题考查向量的夹角,属于简单题.4、D【解题分析】

利用正弦定理化简,再利用三角形面积公式,即可得到,由,求得,最后利用余弦定理即可得到答案.【题目详解】由于,有正弦定理可得:,即由于在中,,,所以,联立,解得:,由于为锐角,且,所以所以在中,由余弦定理可得:,故(负数舍去)故答案选D【题目点拨】本题考查正弦定理,余弦定理,以及面积公式在三角形求边长中的应用,属于中档题.5、D【解题分析】本题考查等差数列的前n项和公式,等差数列的性质,二次函数的性质.设公差为则由等差数列前n项和公式知:是的二次函数;又知对应二次函数图像的对称轴为于是对应二次函数为无法确定所以根据条件无法确定有没有最值;但是根据二次函数图像的对称性,必有即故选D6、D【解题分析】

利用等比数列的通项公式求得公比,进而求得的值.【题目详解】∵,∴.故选:D.【题目点拨】本题考查等比数列通项公式,考查运算求解能力,属于基础题.7、D【解题分析】

算出直线的斜率后可得其倾斜角.【题目详解】设直线的斜率为,且倾斜角为,则,根据,而,故,故选D.【题目点拨】本题考查直线倾斜角的计算,属于基础题.8、C【解题分析】

根据题意,由奇函数的性质可得,变形可得:,结合题意计算可得的值,进而计算可得答案.【题目详解】根据题意,是奇函数,则,变形可得:,则有,即,又由,则,,故选:.【题目点拨】本题考查函数奇偶性的性质以及应用,涉及诱导公式的应用,属于基础题.9、C【解题分析】试题分析:作出可行域如图,圆C:(x-a)2+(y-b)2=1的圆心为,半径的圆,因为圆心C∈Ω,且圆C与x轴相切,可得,所以所以要使a2+b2取得的最大值,只需取得最大值,由图像可知当圆心C位于B点时,取得最大值,B点的坐标为,即时是最大值.考点:线性规划综合问题.10、B【解题分析】

根据不等式性质确定选项.【题目详解】当时,不成立;因为,所以;当时,不成立;当时,不成立;所以选B.【题目点拨】本题考查不等式性质,考查基本分析判断能力,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】.12、【解题分析】

假设正方体棱长,根据//,得到异面直线与所成角,计算,可得结果.【题目详解】假设正方体棱长为1,因为//,所以异面直线与所成角即与所成角则角为如图,所以故答案为:【题目点拨】本题考查异面直线所成的角,属基础题.13、【解题分析】

由,,得的坐标,根据得,由向量数量积的坐标表示即可得结果.【题目详解】∵,,∴又∵,∴,即,所以,解得,故答案为.【题目点拨】本题主要考查了向量的坐标运算,两向量垂直与数量积的关系,属于基础题.14、【解题分析】设该圆台的高为,由题意,得用平行于圆锥底面的平面截圆锥,得到的小圆锥体积是,则,解得,即该圆台的高为3.点睛:本题考查圆锥的结构特征;在处理圆锥的结构特征时可记住常见结论,如本题中用平行于圆锥底面的平面截圆锥,截面与底面的面积之比是两个圆锥高的比值的平方,所得两个圆锥的体积之比是两个圆锥高的比值的立方.15、(或)【解题分析】

先设,根据题意得到,再由两角和的正切公式求出,得到,进而可得出结果.【题目详解】设,则所以,所以,因此.故答案为【题目点拨】本题主要考查三角恒等变换的应用,熟记公式即可,属于常考题型.16、【解题分析】

直接利用正弦定理和三角函数关系式的变换的应用求出结果.【题目详解】由正弦定理,结合可得,即,即,从而.【题目点拨】本题考查的知识要点:三角函数关系式的恒等变换,正弦定理余弦定理和三角形面积的应用,主要考察学生的运算能力和转换能力,属于基础题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见证明;(2)【解题分析】

(1)要证线面平行即证线线平行,本题连接A1B,(2)取中点,连接证明平面,再求出,得到.【题目详解】(1)如图,连接,在中,因为和分别是和的中点,所以.又因为平面,所以平面;取中点和中点,连接,,.因为和分别为和,所以,,故且,所以,且.又因为平面,所以平面,从而为直线与平面所成的角.在中,可得,所以.因为,,所以,,,所以,,又由,有.在中,可得;在中,,因此.所以直线与平面所成角为.【题目点拨】求线面角一般有两个方法:几何法做出线上一点到平面的高,求出高;或利用等体积法求高向量法.18、(1),](2)值域为[,].【解题分析】

(1)利用三角恒等变换化简的解析式,根据条件,可求出周期和,结合奇函数性质,求出,再用整体代入法求出内的递减区间;(2)利用函数的图象变换规律,求出的解析式,再利用正弦函数定义域,即可求出时的值域.【题目详解】解:(1)由题意得,因为相邻两对称轴之间距离为,所以,又因为函数为奇函数,所以,∴,因为,所以故函数令.得.令得,因为,所以函数的单调递减区间为,](2)由题意可得,因为,所以所以,.即函数的值域为[,].【题目点拨】本题主要考查正弦函数在给定区间内的单调性和值域,包括周期性,奇偶性,单调性和最值,还涉及三角函数图像的平移伸缩和三角恒等变换中的辅助角公式.19、(1),;(2).【解题分析】

(1)先求出周期得,由最高点坐标可求得,然后由正弦函数的单调性得结论;(2)由直线与的图象交点的对称性可得.【题目详解】(1)由题意,∴,又,,,由得,∴,令得,∴单调减区间是,;(2)在含有三个周期,如图,的图象与在上有六个交点,前面两个交点关于直线对称,中间两个关于直线对称,最后两个关于直线对称,∴所求六个根的和为.【题目点拨】本题考查由三角函数的性质求解析式,考查函数的单调性,考查函数零点与方程根的分布问题.函数零点与方程根的分布问题可用数形结合思想,把方程的根转化为函数图象与直线交点的横坐标,再利用对称性求解.20、(1)1;(2)﹣6【解题分析】

(1)利用单位向量的定义,直接运算即可;(2)利用,有,得出,然后列方程求解即可【题目详解】解:(1);(2)当,则存在实数使,所以不共线,得,【题目点拨】本题考查向量平行的定义,注意列方程运算即可,属于简单题21、(Ⅰ);(Ⅱ)【解题分析】

(Ⅰ)由由正弦定理得,进而得到,求得,即可求解;(Ⅱ)由(Ⅰ)和正弦定理,求得,再由余弦定理得,利用三角形的面积公式,求得,进而求得的值,得出三角形的周长.【题目详解】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论