版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届重庆数学高一下期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在直角中,三条边恰好为三个连续的自然数,以三个顶点为圆心的扇形的半径为1,若在中随机地选取个点,其中有个点正好在扇形里面,则用随机模拟的方法得到的圆周率的近似值为()A. B. C. D.2.设数列的前项和为,且,则数列的前10项的和是()A.290 B. C. D.3.如图,测量河对岸的塔高时,选与塔底B在同一水平面内的两个测点C与D.现测得,,,并在点C测得塔顶A的仰角为,则塔高为()A. B. C.60m D.20m4.在中,,,,点P是内(包括边界)的一动点,且(),则的最大值为()A.6 B. C. D.65.点到直线(R)的距离的最大值为A. B. C.2 D.6.已知圆锥的母线长为6,母线与轴的夹角为30°,则此圆锥的体积为()A. B. C. D.7.某校进行了一次消防安全知识竞赛,参赛学生的得分经统计得到如图的频率分布直方图,若得分在的有60人,则参赛学生的总人数为()A.100 B.120 C.150 D.2008.在中,,,则的最大值为A. B. C. D.9.直线的倾斜角为A. B. C. D.10.下图为某市国庆节7天假期的楼房认购量与成交量的折线图,小明同学根据折线图对这7天的认购量(单位:套)与成交量(单位:套)作出如下判断:①日成交量的中位数是26;②日成交量超过日平均成交量的有2天;③认购量与日期正相关;④10月2日到10月6日认购量的分散程度比成交量的分散程度更大.则上述判断错误的个数为()A.4 B.3 C.2 D.1二、填空题:本大题共6小题,每小题5分,共30分。11.已知为的三个内角A,B,C的对边,向量,.若,且,则B=12.若两个正实数满足,且不等式有解,则实数的取值范围是____________.13.已知,则的值是______.14.经过点且在x轴上的截距等于在y轴上的截距的直线方程是________.15.某产品分为优质品、合格品、次品三个等级,生产中出现合格品的概率为0.25,出现次品的概率为0.03,在该产品中任抽一件,则抽到优质品的概率为__________.16.若,则=_________________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列an的前n项和为Sn,a1(1)分别求数列an(2)若对任意的n∈N*,18.已知,且,向量,.(1)求函数的解析式,并求当时,的单调递增区间;(2)当时,的最大值为5,求的值;(3)当时,若不等式在上恒成立,求实数的取值范围.19.据说伟大的阿基米德逝世后,敌军将领马塞拉斯给他建了一块墓碑,在墓碑上刻了一个如图所示的图案,图案中球的直径、圆柱底面的直径和圆柱的高相等,圆锥的顶点为圆柱上底面的圆心,圆锥的底面是圆柱的下底面.(1)试计算出图案中球与圆柱的体积比;(2)假设球半径.试计算出图案中圆锥的体积和表面积.20.如图,已知平面是正三角形,.(1)求证:平面平面;(2)求二面角的正切值.21.如图,在平面直角坐标系xoy中,锐角和钝角的终边分别与单位圆交于A,B两点.(1)若点A的纵坐标是点B的纵坐标是,求的值;(2)若,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】由题直角中,三条边恰好为三个连续的自然数,设三边为解得以三个顶点为圆心的扇形的面积和为由题故选B.2、C【解题分析】
由得为等差数列,求得,得利用裂项相消求解即可【题目详解】由得,当时,,整理得,所以是公差为4的等差数列,又,所以,从而,所以,数列的前10项的和.故选.【题目点拨】本题考查递推关系求通项公式,等差数列的通项及求和公式,裂项相消求和,熟记公式,准确得是等差数列是本题关键,是中档题3、D【解题分析】
由正弦定理确定的长,再求出.【题目详解】,由正弦定理得:故选D【题目点拨】本题是正弦定理的实际应用,关键是利用正弦定理求出,属于基础题.4、B【解题分析】
利用余弦定理和勾股定理可证得;取,作,根据平面向量平行四边形法则可知点轨迹为线段,由此可确定,利用勾股定理可求得结果.【题目详解】由余弦定理得:如图,取,作,交于在内(包含边界)点轨迹为线段当与重合时,最大,即故选:【题目点拨】本题考查向量模长最值的求解问题,涉及到余弦定理解三角形的应用;解题关键是能够根据平面向量线性运算确定动点轨迹,根据轨迹确定最值点.5、A【解题分析】
把直线方程化为,得到直线恒过定点,由此可得点P到直线的距离的最大值就是点P到定点的距离,得到答案.【题目详解】由题意,直线可化为,令,解得,即直线恒过定点,则点P到直线的距离的最大值就是点P到定点的距离为:,故选A.【题目点拨】本题主要考查了直线方程的应用,其中解答中把直线方程化为,得出直线恒过定点是解答本题的关键,着重考查了转化思想,以及推理与运算能力,属于基础题.6、B【解题分析】
根据母线长和母线与轴的夹角求得底面半径和圆锥的高,代入体积公式求得结果.【题目详解】由题意可知,底面半径;圆锥的高圆锥体积本题正确选项:【题目点拨】本题考查锥体体积的求解问题,属于基础题.7、C【解题分析】
根据频率分布直方图求出得分在的频率,即可得解.【题目详解】根据频率分布直方图可得:得分在的频率0.35,得分在的频率0.3,得分在的频率0.2,得分在的频率0.1,所以得分在的频率0.05,得分在的频率为0.4,有60人,所以参赛学生的总人数为60÷0.4=150人.故选:C【题目点拨】此题考查根据频率分布直方图求某组的频率,根据频率分布直方图的特征计算小矩形的面积,根据总面积之和为1计算未知数,结合频率频数计算总人数.8、A【解题分析】
利用正弦定理得出的外接圆直径,并利用正弦定理化边为角,利用三角形内角和关系以及两角差正弦公式、配角公式化简,最后利用正弦函数性质可得出答案.【题目详解】中,,,则,,其中由于,所以,所以最大值为.故选A.【题目点拨】本题考查正弦定理以及两角差正弦公式、配角公式,考查基本分析计算能力,属于中等题.9、D【解题分析】
求得直线的斜率,由此求得直线的倾斜角.【题目详解】依题意,直线的斜率为,对应的倾斜角为,故选D.【题目点拨】本小题主要考查由直线一般式求斜率和倾斜角,考查特殊角的三角函数值,属于基础题.10、B【解题分析】
将国庆七天认购量和成交量从小到大排列,即可判断①;计算成交量的平均值,可由成交量数据判断②;由图可判断③;计算认购量的平均值与方差,成交量的平均值与方差,对方差比较即可判断④.【题目详解】国庆七天认购量从小到大依次为:91,100,105,107,112,223,276成交量从小到大依次为:8,13,16,26,32,38,166对于①,成交量的中为数为26,所以①正确;对于②,成交量的平均值为,有1天成交量超过平均值,所以②错误;对于③,由图可知认购量与日期没有正相关性,所以③错误;对于④,10月2日到10月6日认购量的平均值为方差为10月2日到10月6日成交量的平均值为方差为所以由方差性质可知,10月2日到10月6日认购量的分散程度比成交量的分散程度更小,所以④错误;综上可知,错误的为②③④故选:B【题目点拨】本题考查了统计的基本内容,由图示分析计算各个量,利用方差比较数据集中程度,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
根据得,再利用正弦定理得,化简得出角的大小。再根据三角形内角和即可得B.【题目详解】根据题意,由正弦定理可得则所以答案为。【题目点拨】本题主要考查向量与三角形正余弦定理的综合应用,属于基础题。12、【解题分析】试题分析:因为不等式有解,所以,因为,且,所以,当且仅当,即时,等号是成立的,所以,所以,即,解得或.考点:不等式的有解问题和基本不等式的求最值.【方法点晴】本题主要考查了基本不等式在最值中的应用,不等式的有解问题,在应用基本不等式求解最值时,呀注意“一正、二定、三相等”的判断,运用基本不等式解题的关键是寻找和为定值或是积为定值,难点在于如何合理正确的构造出定值,对于不等式的有解问题一般选用参数分离法,转化为函数的最值或借助数形结合法求解,属于中档试题.13、【解题分析】
根据两角差的正切公式即可求解【题目详解】故答案为:【题目点拨】本题考查两角差的正切公式的用法,属于基础题14、或【解题分析】
当直线不过原点时,设直线的方程为,把点代入求得的值,即可求得直线方程,当直线过原点时,直线的方程为,综合可得答案.【题目详解】当直线不过原点时,设直线的方程为,把点代入可得:,即此时直线的方程为:当直线过原点时,直线的方程为,即综上可得:满足条件的直线方程为:或故答案为:或【题目点拨】过原点的直线横纵截距都为0,在解题的时候容易漏掉.15、0.72【解题分析】
根据对立事件的概率公式即可求解.【题目详解】由题意,在该产品中任抽一件,“抽到优质品”与“抽到合格品或次品”是对立事件,所以在该产品中任抽一件,则抽到优质品的概率为.故答案为【题目点拨】本题主要考查对立事件的概率公式,熟记对立事件的概念及概率计算公式即可求解,属于基础题型.16、【解题分析】分析:由二倍角公式求得,再由诱导公式得结论.详解:由已知,∴.故答案为.点睛:三角函数恒等变形中,公式很多,如诱导公式、同角关系,两角和与差的正弦(余弦、正切)公式、二倍角公式,先选用哪个公式后选用哪个公式在解题中尤其重要,但其中最重要的是“角”的变换,要分析出已知角与未知角之间的关系,通过这个关系都能选用恰当的公式.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)an=3n-1【解题分析】
(1)设等差数列bn公差为d,则b解得d=3,bn当n≥2时,an=2Sn-1a2=2a1+1=3aan是以1为首项3为公比的等比数列,则.;(2)由(1)知,Sn原不等式可化为k≥6(n-2)若对任意的n∈N*恒成立,问题转化为求数列6(n-2)3令cn=6(n-2)解得52≤n≤7即cn的最大项为第3项,c3=62718、(1),单调增区间为;(2)或;(3).【解题分析】试题分析:(Ⅰ)化简,解不等式求得的范围即得增区间(2)讨论a的正负,确定最大值,求a;(3)化简绝对值不等式,转化在上恒成立,即,求出在上的最大值,最小值即得解.试题解析:(1)∵∴∴单调增区间为(2)当时,若,,∴若,,∴∴综上,或.(3)在上恒成立,即在上恒成立,∴在上最大值2,最小值,∴∴的取值范围.点睛:本题考查了平面向量的数量积的应用,三角函数的单调性与最值,三角函数的化简,恒成立问题的处理及分类讨论的数学思想,综合性强.19、(1);(2)圆锥体积,表面积【解题分析】
(1)由球的半径可知圆柱底面半径和高,代入球和圆柱的体积公式求得体积,作比得到结果;(2)由球的半径可得圆锥底面半径和高,从而可求解出圆锥母线长,代入圆锥体积和表面积公式可求得结果.【题目详解】(1)设球的半径为,则圆柱底面半径为,高为球的体积;圆柱的体积球与圆柱的体积比为:(2)由题意可知:圆锥底面半径为,高为圆锥的母线长:圆锥体积:圆锥表面积:【题目点拨】本题考查空间几何体的表面积和体积求解问题,考查学生对于体积和表面积公式的掌握,属于基础题.20、(1)证明见解析;(2).【解题分析】
(1)取的中点的中点,证明,由根据线面垂直判定定理可得,可得平面,结合面面垂直的判定定理,可得平面平面;
(2)过作,连接BM,可以得到为二面角的平面角,解三角形即可求出二面角的正切值.【题目详解】解:(1)取BE的中点F.
AE的中点G,连接GD,CF∴,GF∥AB又∵,CD∥AB∴CD∥GF,CD=GF,∴CFGD是平行四边形,∴CF∥GD,又∵CF⊥BF,CF⊥AB∴CF⊥平面ABE∵CF∥DG∴DG⊥平面ABE,∵DG⊂平面ABE∴平面ABE⊥平面ADE;(2)∵AB=BE,∴AE⊥BG,∴BG⊥平面ADE,过G作GM⊥DE,连接BM,则BM⊥DE,则∠BMG为二面角A−DE−B的平面角,设AB=BC=2CD=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版土特产产业扶贫合作开发合同3篇
- 2025年度互联网金融服务合作协议7篇
- 2025年厂房建筑安全质量监管承包合同4篇
- 二零二四年度影视机构录像内容保密协议3篇
- 2025年度跨境电子商务平台合作合同参考范本3篇
- 2025年度茶餐厅茶叶及茶叶原料供应协议3篇
- 森林草莓SMR基因家族调控果实成熟与抗灰霉病的功能初探
- 二零二五年度跨境电子商务平台合作框架协议4篇
- 二零二五版美术馆东馆馆舍租赁艺术展览技术支持合同4篇
- 2025年度机场接送车驾驶员聘用及服务标准合同4篇
- 定额〔2025〕1号文-关于发布2018版电力建设工程概预算定额2024年度价格水平调整的通知
- 2024年城市轨道交通设备维保及安全检查合同3篇
- 【教案】+同一直线上二力的合成(教学设计)(人教版2024)八年级物理下册
- 湖北省武汉市青山区2023-2024学年七年级上学期期末质量检测数学试卷(含解析)
- 单位往个人转账的合同(2篇)
- 科研伦理审查与违规处理考核试卷
- GB/T 44101-2024中国式摔跤课程学生运动能力测评规范
- 高危妊娠的评估和护理
- 2024年山东铁投集团招聘笔试参考题库含答案解析
- 2023年高考全国甲卷数学(理)试卷【含答案】
- 数独题目A4打印版无答案
评论
0/150
提交评论