湖南省醴陵一中、攸县一中2024届数学高一下期末质量检测模拟试题含解析_第1页
湖南省醴陵一中、攸县一中2024届数学高一下期末质量检测模拟试题含解析_第2页
湖南省醴陵一中、攸县一中2024届数学高一下期末质量检测模拟试题含解析_第3页
湖南省醴陵一中、攸县一中2024届数学高一下期末质量检测模拟试题含解析_第4页
湖南省醴陵一中、攸县一中2024届数学高一下期末质量检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省醴陵一中、攸县一中2024届数学高一下期末质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数在区间(,)内的图象是()A. B. C. D.2.设均为正数,且,,.则()A. B. C. D.3.某中学高一年级甲班有7名学生,乙班有8名学生参加数学竞赛,他们取得的成绩的茎叶图如图所示,其中甲班学生的平均分是85,乙班学生成绩的中位数是82,若从成绩在的学生中随机抽取两名学生,则两名学生的成绩都高于82分的概率为()A. B. C. D.4.设是两个不同的平面,是一条直线,以下命题正确的是()A.若,则 B.若,则C.若,则 D.若,则5.等差数列中,则()A.8 B.6 C.4 D.36.若关于的方程有且只有两个不同的实数根,则实数的取值范围是()A. B. C. D.7.函数的部分图像如图所示,则的值为()A.1 B.4 C.6 D.78.设函数,若函数恰有两个零点,则实数的取值范围为()A. B. C. D.9.执行如图所示的程序框图,则输出的s的值为()A. B. C. D.10.设是数列的前项和,时点在抛物线上,且的首项是二次函数的最小值,则的值为()A.45 B.54 C.36 D.-18二、填空题:本大题共6小题,每小题5分,共30分。11.甲、乙两人要到某地参加活动,他们都随机从火车、汽车、飞机三种交通工具中选择一种,则他们选择相同交通工具的概率为_________.12.某奶茶店的日销售收入y(单位:百元)与当天平均气温x(单位:)之间的关系如下:x012y5221通过上面的五组数据得到了x与y之间的线性回归方程:;但现在丢失了一个数据,该数据应为____________.13.若直线与直线互相平行,那么a的值等于_____.14.如图所示,分别以为圆心,在内作半径为2的三个扇形,在内任取一点,如果点落在这三个扇形内的概率为,那么图中阴影部分的面积是____________.15.已知等差数列满足,则____________.16.已知正实数x,y满足,则的最小值为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设两个非零向量,不共线,如果,,.(1)求证:、、共线;(2)试确定实数,使和共线.18.等差数列的前项和为,数列是等比数列,满足,,,,.(1)求数列和的通项公式;(2)令,求数列的前项和.19.在中,的对边分别为,已知.(1)求的值;(2)若的面积为,,求的值.20.如图,某小区有一块半径为米的半圆形空地,开发商计划在该空地上征地建一个矩形的花坛和一个等腰三角形的水池EDC,其中为圆心,在圆的直径上,在半圆周上.(1)设,征地面积为,求的表达式,并写出定义域;(2)当满足取得最大值时,建造效果最美观.试求的最大值,以及相应角的值.21.已知圆,直线平分圆.(1)求直线的方程;(2)设,圆的圆心是点,对圆上任意一点,在直线上是否存在与点不重合的点,使是常数,若存在,求出点坐标;若不存在,说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】解:函数y=tanx+sinx-|tanx-sinx|=分段画出函数图象如D图示,故选D.2、A【解题分析】试题分析:在同一坐标系中分别画出,,的图象,与的交点的横坐标为,与的图象的交点的横坐标为,与的图象的交点的横坐标为,从图象可以看出.考点:指数函数、对数函数图象和性质的应用.【方法点睛】一般一个方程中含有两个以上的函数类型,就要考虑用数形结合求解,在同一坐标系中画出两函数图象的交点,函数图象的交点的横坐标即为方程的解.3、D【解题分析】

计算得到,,再计算概率得到答案.【题目详解】,解得;,解得;故.故选:.【题目点拨】本题考查了平均值,中位数,概率的计算,意在考查学生的应用能力.4、C【解题分析】对于A、B、D均可能出现,而对于C是正确的.5、D【解题分析】

设等差数列的公差为,根据题意,求解,进而可求得,即可得到答案.【题目详解】由题意,设等差数列的公差为,则,即,又由,故选D.【题目点拨】本题主要考查了等差数列的通项公式的应用,其中解答中设等差数列的公差为,利用等差数列的通项公式化简求解是解答的关键,着重考查了推理与运算能力,属于基础题.6、B【解题分析】

方程化为,可转化为半圆与直线有两个不同交点,作图后易得.【题目详解】由得由题意半圆与直线有两个不同交点,直线过定点,作出半圆与直线,如图,当直线过时,,,当直线与半圆相切(位置)时,由,解得.所以的取值范围是.故选:B.【题目点拨】本题考查方程根的个数问题,把问题转化为直线与半圆有两个交点后利用数形结合思想可以方便求解.7、C【解题分析】

根据是零点以及的纵坐标值,求解出的坐标值,然后进行数量积计算.【题目详解】令,且是第一个零点,则;令,是轴右侧第一个周期内的点,所以,则;则,,则.选C.【题目点拨】本题考查正切型函数以及坐标形式下向量数量积的计算,难度较易.当已知,则有.8、A【解题分析】

首先注意到,是函数的一个零点.当时,将分离常数得到,构造函数,画出的图像,根据“函数与函数有一个交点”结合图像,求得的取值范围.【题目详解】解:由恰有两个零点,而当时,,即是函数的一个零点,故当时,必有一个零点,即函数与函数必有一个交点,利用单调性,作出函数图像如下所示,由图可知,要使函数与函数有一个交点,只需即可.故实数的取值范围是.故选:A.【题目点拨】本小题主要考查已知函数零点个数,求参数的取值范围,考查数形结合的数学思想方法,属于中档题.9、A【解题分析】

模拟程序运行,观察变量值,判断循环条件可得结论.【题目详解】运行程序框图,,;,;,,此时满足条件,跳出循环,输出的.故选:A.【题目点拨】本题考查程序框图,考查循环结构,解题时只要模拟程序运行即可得结论.10、B【解题分析】

根据点在抛物线上证得数列是等差数列,由二次函数的最小值求得首项,进而求得的值.【题目详解】由于时点在抛物线上,所以,所以数列是公差为的等差数列.二次函数,所以.所以.故选:B【题目点拨】本小题主要考查等差数列的证明,考查二次函数的最值的求法,考查等差数列前项和公式,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

利用古典概型的概率求解.【题目详解】甲、乙两人选择交通工具总的选择有种,他们选择相同交通工具有3种情况,所以他们选择相同交通工具的概率为.故答案为:.【题目点拨】本题考查古典概型,要用计数原理进行计数,属于基础题.12、4【解题分析】

根据回归直线经过数据的中心点可求.【题目详解】设丢失的数据为,则,,把代入回归方程可得,故答案为:4.【题目点拨】本题主要考查回归直线的特征,明确回归直线一定经过样本数据的中心点是求解本题的关键,侧重考查数学运算的核心素养.13、;【解题分析】由题意得,验证满足条件,所以14、【解题分析】

先求出三块扇形的面积,再由概率计算公式求出的面积,进而求出阴影部分的面积.【题目详解】∵,∴三块扇形的面积为:,设的面积为,∵在内任取一点,点落在这三个扇形内的概率为,,∴图中阴影部分的面积为:,故答案为:.【题目点拨】本题主要考查几何概型的应用,属于几何概型中的面积问题,难度不大.15、9【解题分析】

利用等差数列下标性质求解即可【题目详解】由等差数列的性质可知,,则.所以.故答案为:9【题目点拨】本题考查等差数列的性质,熟记性质是关键,是基础题16、4【解题分析】

将变形为,展开,利用基本不等式求最值.【题目详解】解:,当时等号成立,又,得,此时等号成立,故答案为:4.【题目点拨】本题考查基本不等式求最值,特别是掌握“1”的妙用,是基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解题分析】

(1)要证、、共线,只要证明存在实数,使得成立即可.

(2)利用向量共线的充要条件和两个非零向量与不共线即可求出.【题目详解】(1)证明:由.又,则.所以.所以、、共线.(2)和共线,则存在实数,使得成立.向量,不共线,所以,解得:所以当时,使和共线.【题目点拨】本题考查利用向量共线的充要条件证明点共线和求参数的值.18、(1),;(2)【解题分析】

(1)由是等差数列,,,可求出,由是等比数列,,,,可求出;(2)将和的通项公式代入,则,利用裂项相消求和法可求出.【题目详解】(1),,,解得.又,,.(2)由(1),得【题目点拨】本题考查了等差数列和等比数列的通项公式的求法,考查了用裂项相消求数列的前项和,属于中档题.19、(Ⅰ)(Ⅱ)【解题分析】

(1)根据二倍角和诱导公式可得的值;(2)根据面积公式求,然后利用余弦定理求,最后根据正弦定理求的值.【题目详解】(1),,所以原式整理为,解得:(舍)或,;(2),解得,根据余弦定理,,,代入解得:,.【题目点拨】本题考查了根据正余弦定理解三角形,属于简单题.20、(1)(2)最大值为,此时【解题分析】

(1)连接,在中,求出,进而求出面积以及角的范围;(2)令,再求出的范围,转化为二次函数即可求出最大值,以及相应角的值.【题目详解】(1)连接,在中,,(2),令,因为,所以,所以因为在上单调递增,所以时有最大值为,此时【题目点拨】本题主要考查三角函数与实际应用相结合,最终转化为二次函数进行求解,这类问题的特点是通过现实生活的事例考查解决问题的能力、仔细理解题,才能将实际问题转化为数学模型进行解答.21、(1)直线的方程为.(2)见解析【解题分析】

(1)结合直线l平分圆,则可知该直线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论