2024届扬州市重点中学数学高一下期末预测试题含解析_第1页
2024届扬州市重点中学数学高一下期末预测试题含解析_第2页
2024届扬州市重点中学数学高一下期末预测试题含解析_第3页
2024届扬州市重点中学数学高一下期末预测试题含解析_第4页
2024届扬州市重点中学数学高一下期末预测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届扬州市重点中学数学高一下期末预测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在边长为1的正方体中,,,分别是棱,,的中点,是底面内一动点,若直线与平面没有公共点,则三角形面积的最小值为()A.1 B. C. D.2.已知为等比数列的前项和,,,则A. B. C. D.113.下列函数中,值域为的是()A. B. C. D.4.若实数,满足约束条件,则的最大值为()A.-3 B.1 C.9 D.105.在等比数列中,若,则()A.3 B. C.9 D.136.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.“至少有1个白球”和“都是红球”B.“至少有2个白球”和“至多有1个红球”C.“恰有1个白球”和“恰有2个白球”D.“至多有1个白球”和“都是红球”7.设△ABC的内角A,B,C所对的边长分别为a,b,c,且,则的最大值为()A. B.1 C. D.8.将函数y=sin2x的图象向右平移A.在区间[-πB.在区间[5πC.在区间[-πD.在区间[π9.已知,,则()A. B. C. D.10.如果直线m//直线n,且m//平面α,那么n与αA.相交 B.n//α C.n⊂α二、填空题:本大题共6小题,每小题5分,共30分。11.已知实数满足约束条件,若目标函数仅在点处取得最小值,则的取值范围是__________.12.数列的前项和为,若对任意,都有,则数列的前项和为________13.下列说法中:①若,满足,则的最大值为;②若,则函数的最小值为③若,满足,则的最小值为④函数的最小值为正确的有__________.(把你认为正确的序号全部写上)14.已知正实数x,y满足2x+y=2,则xy的最大值为______.15.________16.函数的定义域是________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角的对边分别为,且.(1)求角的大小;(2)若,求的面积18.如图所示,某住宅小区的平面图是圆心角为120°的扇形,小区的两个出入口设置在点及点处,且小区里有一条平行于的小路,已知某人从沿走到用了10分钟,从沿走到用了6分钟,若此人步行的速度为每分钟50米,求该扇形的半径的长.19.针对国家提出的延迟退休方案,某机构进行了网上调查,所有参与调查的人中,持“支持”、“保留”和“不支持”态度的人数如下表所示:支持保留不支持岁以下岁以上(含岁)(1)在所有参与调查的人中,用分层抽样的方法抽取个人,已知从持“不支持”态度的人中抽取了人,求的值;(2)在接受调查的人中,有人给这项活动打出的分数如下:,,,,,,,,,,把这个人打出的分数看作一个总体,从中任取一个数,求该数与总体平均数之差的绝对值超过的概率.20.已知函数.(1)求的最小正周期;(2)若,求当时自变量的取值集合.21.某校200名学生的数学期中考试成绩频率分布直方图如图所示,其中成绩分组区间是.(1)求图中m的值;(2)根据频率分布直方图,估计这200名学生的平均分(同一组中的数据用该组区间的中间值作代表)和中位数(四舍五入取整数);(3)若这200名学生的数学成绩中,某些分数段的人数x与英语成绩相应分数段的人数y之比如下表所示,求英语成绩在的人数.分数段[70,80)[80,90)[90,100)[100,110)[110,120)x:y1:22:16:51:21:1

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

根据直线与平面没有公共点可知平面.将截面补全后,可确定点的位置,进而求得三角形面积的最小值.【题目详解】由题意,,分别是棱,,的中点,补全截面为,如下图所示:因为直线与平面没有公共点所以平面,即平面,平面平面此时位于底面对角线上,且当与底面中心重合时,取得最小值此时三角形的面积最小故选:D【题目点拨】本题考查了直线与平面平行、平面与平面平行的性质与应用,过定点截面的作法,属于难题.2、C【解题分析】

由题意易得数列的公比代入求和公式计算可得.【题目详解】设等比数列公比为q,,则,解得,,故选:C.【题目点拨】本题考查等比数列的求和公式和通项公式,求出数列的公比是解决问题的关键,属基础题.3、B【解题分析】

依次判断各个函数的值域,从而得到结果.【题目详解】选项:值域为,错误选项:值域为,正确选项:值域为,错误选项:值域为,错误本题正确选项:【题目点拨】本题考查初等函数的值域问题,属于基础题.4、C【解题分析】

画出可行域,向上平移基准直线到可行域边界的位置,由此求得目标函数的最大值.【题目详解】画出可行域如下图所示,由图可知,向上平移基准直线到的位置,此时目标函数取得最大值为.故选C.【题目点拨】本小题主要考查利用线性规划的知识求目标函数的最大值,考查数形结合的数学思想方法,属于基础题.5、A【解题分析】

根据等比数列性质即可得解.【题目详解】在等比数列中,,,所以,所以,.故选:A【题目点拨】此题考查等比数列的性质,根据性质求数列中的项的关系,关键在于熟练掌握相关性质,准确计算.6、C【解题分析】

结合互斥事件与对立事件的概念,对选项逐个分析可选出答案.【题目详解】对于选项A,“至少有1个白球”和“都是红球”是对立事件,不符合题意;对于选项B,“至少有2个白球”表示取出2个球都是白色的,而“至多有1个红球”表示取出的球1个红球1个白球,或者2个都是白球,二者不是互斥事件,不符合题意;对于选项C,“恰有1个白球”表示取出2个球1个红球1个白球,与“恰有2个白球”是互斥而不对立的两个事件,符合题意;对于选项D,“至多有1个白球”表示取出的2个球1个红球1个白球,或者2个都是红球,与“都是红球”不是互斥事件,不符合题意.故选C.【题目点拨】本题考查了互斥事件和对立事件的定义的运用,考查了学生对知识的理解和掌握,属于基础题.7、D【解题分析】

根据正弦定理将已知等式化简得,再根据差角正切公式以及基本不等式可得结论.【题目详解】由正弦定理以及,可得,在中,代入上式中整理得,,即,即,且,所以,当且仅当,即时取等号.故选:D.【题目点拨】本题考查了正弦定理在解三角形中的应用,属于基础题.8、A【解题分析】

函数y=sin2x的图象向右平移y=sin2kπ-π单调递减区间:2kπ+π2≤2x-π3【题目详解】本题考查了正弦型函数图象的平移变换以及求正弦型函数的单调区间.9、C【解题分析】

由放缩法可得出,再利用特殊值法以及不等式的基本性质可判断各选项中不等式的正误.【题目详解】,,可得.取,,,则A、D选项中的不等式不成立;取,,,则B选项中的不等式不成立;且,由不等式的基本性质得,C选项中的不等式成立.故选:C.【题目点拨】本题考查不等式正误的判断,一般利用不等式的性质或特殊值法进行判断,考查推理能力,属于中等题.10、D【解题分析】

利用直线与平面平行的判定定理和直线与平面平行的性质进行判断即可.【题目详解】∵直线m/直线n,且m/平面∴当n不在平面α内时,平面α内存在直线m'//m⇒n//m',符合线面平行的判定定理可得n/平面α当n在平面α内时,也符合条件,n与α的位置关系是n//α或【题目点拨】本题主要考查线面平行的判定定理以及线面平行的性质,意在考查对基本定理掌握的熟练程度,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

利用数形结合,讨论的范围,比较斜率大小,可得结果.【题目详解】如图,当时,,则在点处取最小值,符合当时,令,要在点处取最小值,则当时,要在点处取最小值,则综上所述:故答案为:【题目点拨】本题考查目标函数中含参数的线性规划问题,难点在于寻找斜率之间的关系,属中档题.12、【解题分析】

根据数列的递推公式,求得,再结合等差等比数列的前项和公式,即可求解,得到答案.【题目详解】由题意,数列满足,…①,…②由①-②,可得,即当时,,所以,则数列的前项和为.【题目点拨】本题主要考查了数列的递推关系式的应用,以及等差、等比数列的前项和的应用,其中解答中熟练应用熟练的递推公式得到数列的通项公式,再结合等差、等比数列的前项和公式的准确计算是解答的关键,着重考查了推理与运算能力,属于中档试题.13、③④【解题分析】

①令,得出,再利用双勾函数的单调性判断该命题的正误;②将函数解析式变形为,利用基本不等式判断该命题的正误;③由得出,得出,利用基本不等式可判断该命题的正误;④将代数式与代数式相乘,展开后利用基本不等式可求出的最小值,进而判断出该命题的正误。【题目详解】①由得,则,则,设,则,则,则上减函数,则上为增函数,则时,取得最小值,当时,,故的最大值为,错误;②若,则函数,则,即函数的最大值为,无最小值,故错误;③若,满足,则,则,由,得,则,当且仅当,即得,即时取等号,即的最小值为,故③正确;④,当且仅当,即,即时,取等号,即函数的最小值为,故④正确,故答案为:③④。【题目点拨】本题考查利用基本不等式来判断命题的正误,利用基本不等式需注意满足“一正、二定、三相等”这三个条件,同时注意结合双勾函数单调性来考查,属于中等题。14、【解题分析】

由基本不等式可得,可求出xy的最大值.【题目详解】因为,所以,故,当且仅当时,取等号.故答案为.【题目点拨】利用基本不等式求最值必须具备三个条件:①各项都是正数;②和(或积)为定值;③等号取得的条件.15、【解题分析】

根据极限的运算法则,合理化简、运算,即可求解.【题目详解】由极限的运算,可得.故答案为:【题目点拨】本题主要考查了极限的运算法则的应用,其中解答熟记极限的运算法则,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.16、【解题分析】

根据的值域为求解即可.【题目详解】由题.故定义域为.故答案为:【题目点拨】本题主要考查了反三角函数的定义域,属于基础题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】

(1)根据正弦定理把题设等式中的边换成相应角的正弦,化简整理可求得,进而求得;(2)根据余弦定理得,结合求得的值,进而由三角形的面积公式求得面积.【题目详解】(1)根据正弦定理,又,.(2)由余弦定理得:,代入得,故面积为【题目点拨】本题主要考查正弦定理、余弦定理及特殊角的三角函数,属于简单题.对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以便在解题中直接应用.18、【解题分析】

连接,由题意,得米,米,,在△中,由余弦定理可得答案.【题目详解】设该扇形的半径为米,连接,如图所示:由题意,得米,米,,在△中,由余弦定理得,即,解得米.答:该扇形的半径的长为米.【题目点拨】本题考查了利用余弦定理解三角形,将问题转化为在三角形中求解是解题关键,属于基础题.19、(1)120;(2).【解题分析】

(1)参与调查的总人数为20000,其中从持“不支持”态度的人数5000中抽取了30人,由此能求出n.(2)总体的平均数为9,与总体平均数之差的绝对值超过0.6的数有8.2,8.3,9.7,由此能求出任取1个数与总体平均数之差的绝对值超过0.6的概率.【题目详解】(1)参与调查的总人数为8000+4000+2000+1000+2000+3000=20000,其中不支持态度的人数2000+3000=5000中抽取了30人,所以n=.(2)总体的平均数与总体平均数之差的绝对值超过0.6的数有8.2,8.3,9.7,所以任取一个数与总体平均数之差的绝对值超过0.6的概率.【题目点拨】本题主要考查了样本容量的求法,分层抽样,用列举法求古典概型的概率,属于中档题.20、(1);(2)或【解题分析】

(1)由辅助角公式可得,再求周期即可;(2)由求出,再解方程即可.【题目详解】解:(1),则的最小正周期为.(2)因为,所以,即,解得.因为,所以.因为,所以,即,则或,解得或.故当时,自变量的取值集合为或.【题目点拨】本题考查了三角恒等变换,重点考查了解三角方程,属中档题.21、(1)(2)平均分为,中位数为(3)140人【解题分析】

(1)由题得,解方程即得解;(2)利用频率分布直方图中平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论