重庆市渝中学区三十中学2023年数学八上期末质量跟踪监视试题含解析_第1页
重庆市渝中学区三十中学2023年数学八上期末质量跟踪监视试题含解析_第2页
重庆市渝中学区三十中学2023年数学八上期末质量跟踪监视试题含解析_第3页
重庆市渝中学区三十中学2023年数学八上期末质量跟踪监视试题含解析_第4页
重庆市渝中学区三十中学2023年数学八上期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆市渝中学区三十中学2023年数学八上期末质量跟踪监视试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.若一个多边形的每个外角都等于36°,则这个多边形的边数是().A.10 B.9 C.8 D.72.已知线段a=2cm,b=4cm,则下列长度的线段中,能与a,b组成三角形的是()A.2cm B.4cm C.6cm D.8cm3.在下列长度的各组线段中,能组成直角三角形的是()A.5,6,7 B.5,12,13 C.1,4,9 D.5,11,124.下列各式中,从左到右的变形是因式分解的是()A. B.C. D.5.若等腰△ABC的周长为20,AB=8,则该等腰三角形的腰长为().A.8 B.6 C.4 D.8或66.下列条件:①∠AEC=∠C,②∠C=∠BFD,③∠BEC+∠C=180°,其中能判断ABCD的是()A.①②B.①③C.②D.①②③7.已知函数的图象如左侧图象所示,则的图象可能是()A. B.C. D.8.下列关于分式方程增根的说法正确的是()A.使所有的分母的值都为零的解是增根B.分式方程的解为零就是增根C.使分子的值为零的解就是增根D.使最简公分母的值为零的解是增根9.如图,在中,,,以点为圆心,小于的长为半径作弧,分别交,于两点;再分别以点为圆心,大于长为半径作弧,两弧交于点,作射线交于点.若的面积为9,则的面积为()A.3 B. C.6 D.10.如图,正五边形ABCDE,BG平分∠ABC,DG平分正五边形的外角∠EDF,则∠G=()A.36°B.54°C.60°D.72°11.如图,中,是的垂直平分线,,的周长为16,则的周长为()A.18 B.21 C.24 D.2612.如图,x轴是△AOB的对称轴,y轴是△BOC的对称轴,点A的坐标为(1,2),则点C的坐标为()A.(-1,-2) B.(1,-2) C.(-1,2) D.(-2,-1)二、填空题(每题4分,共24分)13.有5个从小到大排列的正整数,中位数是3,唯一的众数是8,则这5个数的平均数为__________.14.如图所示,于点,且,,若,则___.15.如图,在△ABC中,∠BAC=90°.AD⊥BC于点D,若∠C=30°,BD=1,则线段CD的长为_____.16.若,则______.17.如图,中,,,把沿翻折,使点落在边上的点处,且,那么的度数为________.18.分解因式:_________________.三、解答题(共78分)19.(8分)已知△ABC等边三角形,△BDC是顶角120°的等腰三角形,以D为顶点作60°的角,它的两边分别与AB.AC所在的直线相交于点M和N,连接MN.(1)如图1,当点M、点N在边AB、AC上且DM=DN时,探究:BM、MN、NC之间的关系,并直接写出你的结论;(2)如图2,当点M、点N在边AB、AC上,但DM≠DN时,(1)中的结论还成立吗?写出你的猜想并加以证明;(3)如图3,若点M、N分别在射线AB、CA上,其他条件不变,(1)中的结论还成立吗?若成立,写出你的猜想;若不成立,请直接写出新的结论.20.(8分)已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点.(1)如图,E、F分别是AB、AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.(2)若E、F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?画出图形,写出结论不证明.21.(8分)中考体育测试前,某区教育局为了了解选报引体向上的初三男生的成绩情况,随机抽取了本区部分选报引体向上项目的初三男生的成绩,并将测试得到的成绩绘成了下面两幅不完整的统计图:请你根据图中的信息,解答下列问题:(1)写出扇形图中______,并补全条形图;(2)样本数据的平均数是______,众数是______,中位数是______;(3)该区体育中考选报引体向上的男生共有1200人,如果体育中考引体向上达6个以上(含6个)得满分,请你估计该区体育中考中选报引体向上的男生能获得满分的有多少名?22.(10分)计算:23.(10分)解答下列各题(1)如图1,已知OA=OB,数轴上的点A所表示的数为m,且|m+n|=2①点A所表示的数m为;②求代数式n2+m﹣9的值.(2)旅客乘车按规定可以随身携带一定质量的行李,如果超过规定,则需购买行李票,设行李票y(元)是行李质量x(千克)的一次函数,其图象如图2所示.①当旅客需要购买行李票时,求出y与x之间的函数关系式;②如果张老师携带了42千克行李,她是否要购买行李票?如果购买需买多少行李票?24.(10分)如图①,在△ABC中,AC=BC,∠ACB=90°,过点C作CD⊥AB于点D,点E是AB边上一动点(不含端点A,B),连接CE,过点B作CE的垂线交直线CE于点F,交直线CD于点G.(1)求证:AE=CG;(2)若点E运动到线段BD上时(如图②),试猜想AE,CG的数量关系是否发生变化,请证明你的结论;(3)过点A作AH⊥CE,垂足为点H,并交CD的延长线于点M(如图③),找出图中与BE相等的线段,直接写出答案BE=25.(12分)解不等式组,并将解集在数轴上表示出来.26.如图,△ABC和△ADE分别是以BC,DE为底边且顶角相等的等腰三角形,点D在线段BC上,AF平分DE交BC于点F,连接BE,EF.(1)CD与BE相等?若相等,请证明;若不相等,请说明理由;(1)若∠BAC=90°,求证:BF1+CD1=FD1.

参考答案一、选择题(每题4分,共48分)1、A【分析】根据正多边形的边数等于360°除以每一个外角的度数列式计算即可得解.【详解】解:∵一个多边形的每个外角都等于36°,∴这个多边形是正多边形,∴360°÷36°=1.∴这个多边形的边数是1.故选:A.【点睛】本题考查了多边形的内角与外角,熟练掌握多边形的外角和、多边形的每一个外角的度数、多边形的边数三者之间的关系是解题的关键.2、B【分析】利用三角形三边关系判断即可,两边之和第三边两边之差.【详解】解:,,第三边能与,能组成三角形的是,故选.【点睛】考查了三角形三边关系,利用三边关系判断时,常用两个较小边的和与较大的边比较大小.两个较小边的和较大的边,则能组成三角形,否则,不可以.3、B【解析】试题分析:解:A、∵52+62≠72,故不能围成直角三角形,此选项错误;C、∵12+42≠92,故不能围成直角三角形,此选项错误;B、∵52+122=132,能围成直角三角形,此选项正确;D、∵52+112≠122,故不能围成直角三角形,此选项错误.故选B.考点:本题考查了勾股定理的逆定理点评:此类试题属于基础性试题,考生直接一招勾股定理把各项带入验证即可4、D【分析】根据因式分解的意义(把一个多项式化成几个整式的积的形式,这个过程叫因式分解)逐个判断即可.【详解】解:A、是整式的乘法,不是因式分解,故本选项不符合题意;

B、右边不是积的形式,所以不是因式分解,故本选项不符合题意;

C、是整式的乘法,不是因式分解,故本选项不符合题意;

D、是因式分解,故本选项符合题意;

故选:D.【点睛】本题考查了因式分解的定义,能正确理解因式分解的定义是解此题的关键.5、D【分析】AB=8可能是腰,也可能是底边,分类讨论,结合等腰三角形的两条腰相等计算出三边,并用三角形三边关系检验即可.【详解】解:若AB=8是腰,则底长为20-8-8=4,三边为4、8、8,能组成三角形,此时腰长为8;若AB=8是底,则腰长为(20-8)÷2=6,三边为6、6、8,能组成三角形,此时腰长为6;综述所述:腰长为8或6.故选:D.【点睛】本题考查等腰三角形的性质和三角形三边的关系,分类讨论是关键.6、B【分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】解:①由“内错角相等,两直线平行”知,根据能判断.②由“同位角相等,两直线平行”知,根据能判断.③由“同旁内角互补,两直线平行”知,根据能判断.故选:.【点睛】本题考查的是平行线的判定,解题时注意:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.7、C【分析】由图知,函数y=kx+b图象过点(0,1),即k>0,b=1,再根据一次函数的特点解答即可.【详解】∵由函数y=kx+b的图象可知,k>0,b=1,∴y=﹣2kx+b=2kx+1,﹣2k<0,∴|﹣2k|>|k|,可见一次函数y=﹣2kx+b图象与x轴的夹角,大于y=kx+b图象与x轴的夹角.∴函数y=﹣2kx+1的图象过第一、二、四象限且与x轴的夹角大.故选:C.【点睛】一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.8、D【解析】试题分析:分式方程的增根是最简公分母为零时,未知数的值.解:分式方程的增根是使最简公分母的值为零的解.故选D.考点:分式方程的增根.9、A【分析】根据作图方法可知是的角平分线,得到,已知,由等角对等边,所以可以代换得到是等腰三角形,由30度角所对的直角边是斜边的一半、三角形的面积公式,可知两个三角形等高,用底边之间的关系式来表示两个三角形的面积的关系,即可求出结果.【详解】,,,根据作图方法可知,是的角平分线,,,点在的中垂线上,在,,,,又,,,故选:A【点睛】根据作图的方法结合题目条件,可知是的角平分线,由等角对等边,所以是等腰三角形,由于所求三角形和已知三角形同高,底满足,所以三角形面积是三角形的,可求得答案.10、B【分析】先求出正五边形一个的外角,再求出内角度数,然后在四边形BCDG中,利用四边形内角和求出∠G.【详解】∵正五边形外角和为360°,∴外角,∴内角,∵BG平分∠ABC,DG平分正五边形的外角∠EDF∴,在四边形BCDG中,∴故选B.【点睛】本题考查多边形角度的计算,正多边形可先计算外角,再计算内角更加快捷简便.11、D【分析】先根据垂直平分线的性质可得,再根据三角形的周长公式即可得.【详解】是的垂直平分线的周长为,的周长为故选:D.【点睛】本题考查了垂直平分线的性质,是一道基础题,熟记垂直平分线的性质是解题关键.12、A【分析】先利用关于x轴对称的点的坐标特征得到B(1,-2),然后根据关于y轴对称的点的坐标特征易得C点坐标.【详解】∵x轴是△AOB的对称轴,∴点A与点B关于x轴对称,而点A的坐标为(1,2),∴B(1,-2),∵y轴是△BOC的对称轴,∴点B与点C关于y轴对称,∴C(-1,-2).故选:A.【点睛】本题考查了坐标与图形变化之对称:关于x轴对称,横坐标相等,纵坐标互为相反数;关于y轴对称,纵坐标相等,横坐标互为相反数;关于直线x=m对称,则P(,b)⇒P(2m-,b),关于直线y=n对称,P(,b)⇒P(,2n-b).二、填空题(每题4分,共24分)13、【分析】根据题意以及众数和中位数的定义可得出这5个数字,然后求其平均数即可.【详解】解:由题意得:这五个数字为:1,2,3,8,8,

则这5个数的平均数为:(1+2+3+8+8)÷5=.

故答案为:.【点睛】本题考查了众数和中位数的知识,难度一般,解答本题的关键是根据题意分析出这五个数字.14、27°【分析】连接AE,先证Rt△ABD≌Rt△CBD,得出四边形ABCE是菱形,根据菱形的性质可推导得到∠E的大小.【详解】如下图,连接AE∵BE⊥AC,∴∠ADB=∠BDC=90°∴△ABD和△CBD是直角三角形在Rt△ABD和Rt△CBD中∴Rt△ABD≌Rt△CBD∴AD=DC∵BD=DE∴在四边形ABCE中,对角线垂直且平分∴四边形ABCE是菱形∵∠ABC=54°∴∠ABD=∠CED=27°故答案为:27°【点睛】本题考查菱形的证明和性质的运用,解题关键是先连接AE,然后利用证Rt△ABD≌Rt△CBD推导菱形.15、1【分析】求出∠BAD=∠BAC﹣∠DAC=10°,求出AB=2,求出BC=4,则CD可求出.【详解】∵AD⊥BC于点D,∠C=10°,∴∠DAC=60°,∵∠BAC=90°,∴∠BAD=∠BAC﹣∠DAC=10°,∴在Rt△ABD中,AB=2BD=2,∴Rt△ABC中,∠C=10°,∴BC=2AB=4,∴CD=BC﹣BD=4﹣1=1.故答案为:1.【点睛】此题主要考查直角三角形的性质与证明,解题的关键是熟知含10°的直角三角形的性质.16、-1【分析】根据“0的算术平方根是0”进行计算即可.【详解】∵,∴,∴x=-1.故答案为:-1.【点睛】本题考查算术平方根,属于基础题型,要求会根据算术平方根求原数.17、【解析】根据等腰三角形的性质,求得∠C,然后利用三角形内角和求得∠FEC,再根据邻补角的定义求得∠AEF,根据折叠的性质可得∠AED=∠FED=∠AEF,在△ADE中利用三角形内角和定理即可求解.【详解】解:∵中,,,∴∠B=∠C=45°又∵∴∠FEC=180°-∠EFC-∠C=180°-15°-45°=120°,∴∠AEF=180°-∠FEC=60°又∵∠AED=∠FED=∠AEF=30°,∠A=90°,∴∠ADE=180°-∠AED-∠A=180°-30°-90°=60°.故答案为:60°.【点睛】本题考查了等腰三角形等边对等角,三角形内角和的应用,折叠的性质,找出图形中相等的角和相等的线段是关键.18、【分析】提出负号后,再运用完全平方公式进行因式分解即可.【详解】.故答案为:.【点睛】此题主要考查了运用完全平方公式进行因式分解,熟练掌握完全平方公式的结构特征是解题的关键.三、解答题(共78分)19、(1)BM+CN=MN;(2)成立;证明见解析;(3)MN=CN-BM.【分析】(1)首先证明Rt△BDM≌Rt△CDN,进而得出△DMN是等边三角形,∠BDM=∠CDN=30°,NC=BM=DM=MN,即可得出答案;

(2)延长AC至E,使得CE=BM并连接DE,构造全等三角形,找到相等的线段DE=DM,再进一步证明△MDN≌△EDN,进而等量代换得到MN=BM+NC;

(3)在CA上截取CE=BM,同理先证Rt△DCE≌Rt△DBM,再证△MDN≌△EDN(SAS),即可得证.【详解】(1)∵△ABC是正三角形,

∴∠ABC=∠ACB=60°,∵△BDC是顶角∠BDC=120°的等腰三角形,

∴∠DBC=∠DCB=30°,

∴∠DBM=∠DCN=90°,

∵在Rt△BDM和Rt△CDN中,,∴Rt△BDM≌Rt△CDN(HL),

∴BM=CN,∠BDM=∠CDN,

∵∠MDN=60°,,

∴△DMN是等边三角形,∠BDM=∠CDN=30°,

∴NC=BM=DM=MN,∴MN=MB+NC;

(2)成立.理由如下:延长AC至E,使CE=BM,连接DE,

∵△BDC是顶角∠BDC=120°的等腰三角形,△ABC是等边三角形,

∴∠BCD=30°,

∴∠ABD=∠ACD=90°,

即∠ECD=∠MBD=90°,

∵在Rt△DCE和Rt△DBM中,,

∴Rt△DCE≌Rt△DBM(SAS),

∴∠BDM=∠CDE,DE=DM,

又∵∠BDC=120°,∠MDN=60°,

∴∠BDM+∠NDC=∠BDC-∠MDN=60°,

∴∠CDE+∠NDC=60°,即∠NDE=60°,

∴∠MDN=∠NDE=60°,∵在△DMN和△DEN中,,∴△DMN≌△DEN(SAS),∴NE=NM,即CE+CN=NM,

∴BM+CN=NM;

(2)MN=CN-BM,理由如下:在CA上截取CE=BM,连接DM,

同理可证明:Rt△DCE≌Rt△DBM(SAS),

∴DE=DM,∠EDC=∠BDM,

∵∠MDN=∠MDB+∠BDN=60°,

∴∠BDN+∠CDE=60°,

∴∠NDE=∠NDM=60°,

∵在△MDN和△EDN中,=60°,

∴△MDN≌△EDN(SAS),

∴MN=NE=NC-CE=NC-BM.【点睛】本题考查了全等三角形的判定与性质,等边三角形的判定和性质,含30度角的直角三角形的性质及等腰三角形的性质;此题从不同角度考查了作相等线段构造全等三角形的能力,要充分利用等边三角形及等腰三角形的性质,转换各相等线段解答.20、(1)见解析;(2)见解析【分析】(1)先连接AD,构造全等三角形:△BED和△AFD.AD是等腰直角三角形ABC底边上的中线,所以有∠CAD=∠BAD=45°,AD=BD=CD,而∠B=∠C=45°,所以∠B=∠DAF,再加上BE=AF,AD=BD,可证出:△BED≌△AFD,从而得出DE=DF,∠BDE=∠ADF,从而得出∠EDF=90°,即△DEF是等腰直角三角形;(2)根据题意画出图形,连接AD,构造△DAF≌△DBE.得出FD=ED,∠FDA=∠EDB,再算出∠EDF=90°,即可得出△DEF是等腰直角三角形.【详解】解:(1)连结AD,∵AB=AC,∠BAC=90°,D为BC中点,∴AD⊥BC,BD=AD,∴∠B=∠BAD=∠DAC=45°,又∵BE=AF,∴△BDE≌△ADF(SAS),∴ED=FD,∠BDE=∠ADF,∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90°,∴△DEF为等腰直角三角形.(2)连结AD∵AB=AC,∠BAC=90°,D为BC中点,∴AD=BD,AD⊥BC,∴∠DAC=∠ABD=45°,∴∠DAF=∠DBE=135°,又∵AF=BE,∴△DAF≌△DBE(SAS),∴FD=ED,∠FDA=∠EDB,∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°.∴△DEF为等腰直角三角形.【点睛】本题利用了等腰直角三角形底边上的中线平分顶角,并且等于底边的一半,还利用了全等三角形的判定和性质,及等腰直角三角形的判定.21、(1)25%,图形见解析;(2)5.3,5,5;(3)540名【分析】(1)用1减去其他人数所占的百分比即可得到a的值,再计算出样本总数,用样本总数×a的值即可得出“引体向上达6个”的人数;(2)根据平均数、众数与中位数的定义求解即可;(3)先求出样本中得满分的学生所占的百分比,再乘以1200即可.【详解】(1)由题意可得,,样本总数为:,做6个的学生数是,条形统计图补充如下:(2)由补全的条形图可知,样本数据的平均数,∵引体向上5个的学生有60人,人数最多,∴众数是5,∵共200名同学,排序后第100名与第101名同学的成绩都是5个,∴中位数为;(3)该区体育中考中选报引体向上的男生能获得满分的有:(名),即该区体育中考中选报引体向上的男生能获得满分的有540名.【点睛】本题主要考查了众数,用样本估计总体,扇形统计图,条形统计图,中位数,平均数,掌握众数,用样本估计总体,扇形统计图,条形统计图,中位数,平均数是解题的关键.22、【分析】先根据算术平方根、立方根、绝对值的意义逐项化简,再算加减即可;【详解】解:原式===【点睛】本题考查了实数的混合运算,熟练掌握算术平方根、立方根、绝对值的意义是解答本题的关键.23、(1)①﹣;②3或﹣5;(2)①y=x﹣5;②她要购买行李票,需买2元的行李票.【分析】(1)①根据勾股定理可以求得OB的值,再根据OA=OB,即可得到m的值;②根据m的值和|m+n|=2,可以得到n的值,从而可以得到n2+m﹣9的值;(2)①根据函数图象利用待定系数法可以得到y与x的函数关系式;②根据①中的函数关系式,将y=0,x=42分别代入计算,即可解答本题.【详解】解:(1)①由图1可知,OA=OB,∵OB==,∴OA=,∴点A表示的数m为﹣,故答案为:﹣;②∵|m+n|=2,m=﹣,∴m+n=±2,m=﹣,当m+n=2时,n=2+,则n2+m﹣9=(2+)2+(﹣)﹣9=9+4+(﹣)﹣9=3;当m+n=﹣2时,n=﹣2+,则n2+m﹣9=(﹣2+)2+(﹣)﹣9=9﹣4+(﹣)﹣9=﹣5;由上可得,n2+m﹣9的值是3或﹣5;(2)①当旅客需要购买行李票时,设y与x之间的函数关系式为y=kx+b,代入(60,5),(90,10)得:,解得:,∴当旅客需要购买行李票时,y与x之间的函数关系式是y=x﹣5;②当y=0时,0=x﹣5,得x=30,当x=42时,y=×42﹣5=2,故她要购买行李票,需买2元的行李票.【点睛】本题考查勾股定理与无理数、二次根式的混合运算以及一次函数的应用,解答本题的关键是准确识别函数图象,熟练掌握待定系数法.24、(1)详见解析;(2)不变,AE=CG,详见解析;(3)CM【分析】(1)如图①,根据等腰直角三角形的性质可以得出∠BCD=∠ACD=45°,根据直角三角形的三角形的性质就可以得出∠CBF=∠ACE,由ASA就可以得出△BCG≌△CAE,就可以得出结论;(2)如图②,根据等腰直角三角形的性质可以得出∠BCD=∠ACD=45°,根据直角三角形的三角形的性质就可以得出∠CBF=∠ACE,由ASA就可以得出△BCG≌△CAE,就可以得出结论;(3)如图③,根据等腰直角三角形的性质可以得出∠BCD=∠ACD=45°,根据直角三角形的三角形的性质就可以得出∠BCE=∠CAM,由ASA就可以得出△BCE≌△CAM,就可以得出结论.【详解】(1)证明:∵AC=BC,∴∠ABC=∠CAB.∵∠ACB=90°,∴∠ABC=∠A=45°,∠ACE+∠BCE=90°.∵BF⊥CE,∴∠BFC=90°,∴∠CBF+∠BCE=90°,∴∠ACE=∠CBF.∵CD⊥AB,∠ABC=∠A=45°,∴∠BCD=∠ACD=45°,∴∠A=∠BCD.在△BCG和△CAE中,∴△BCG≌△CAE(ASA),∴AE=CG.(2)解:不变,AE=CG理由如下:∵AC=BC,∴∠ABC=∠A.∵∠ACB=90°,∴∠ABC=∠A=45°,∠ACE+∠BCE=90°.∵BF⊥CE,∴∠BFC=90°,∴∠CBF+∠BCE=90°,∴∠ACE=∠CBF.∵CD⊥AB,∠ABC=∠A=45°,∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论