2024届广东深圳市红岭中学数学高一第二学期期末学业质量监测模拟试题含解析_第1页
2024届广东深圳市红岭中学数学高一第二学期期末学业质量监测模拟试题含解析_第2页
2024届广东深圳市红岭中学数学高一第二学期期末学业质量监测模拟试题含解析_第3页
2024届广东深圳市红岭中学数学高一第二学期期末学业质量监测模拟试题含解析_第4页
2024届广东深圳市红岭中学数学高一第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广东深圳市红岭中学数学高一第二学期期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若向量,的夹角为60°,且||=2,||=3,则|2|=()A.2 B.14 C.2 D.82.已知实数满足且,则下列关系中一定正确的是()A. B. C. D.3.如图,在平行六面体中,M,N分别是所在棱的中点,则MN与平面的位置关系是()A.MN平面B.MN与平面相交C.MN平面D.无法确定MN与平面的位置关系4.设m,n是两条不同的直线,α A.若m⊥β,n⊥β , n⊥α,则m⊥αC.若m⊥n, n∥α,则m⊥α D.若m⊥n5.下列命题中正确的是()A.相等的角终边必相同 B.终边相同的角必相等C.终边落在第一象限的角必是锐角 D.不相等的角其终边必不相同6.数列1,,,…,的前n项和为A. B. C. D.7.已知,且,,则()A. B. C. D.8.先后抛掷枚均匀的硬币,至少出现一次反面的概率是()A. B. C. D.9.若,则的大小关系为A. B. C. D.10.如右图所示的直观图,其表示的平面图形是(A)正三角形(B)锐角三角形(C)钝角三角形(D)直角三角形二、填空题:本大题共6小题,每小题5分,共30分。11.某校选修“营养与卫生”课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法从这70名学生中抽取一个样本,已知在高二年级的学生中抽取了8名,则在该校高一年级的学生中应抽取的人数为________.12.在等差数列中,,,则.13.己知是等差数列,是其前项和,,则______.14.不等式的解集是_________________15.已知,,若,则____16.直线与的交点坐标为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量的夹角为60°,且.(1)求与的值;(2)求与的夹角.18.某校研究性学习小组从汽车市场上随机抽取辆纯电动汽车调查其续驶里程(单次充电后能行驶的最大里程),被调查汽车的续驶里程全部介于公里和公里之间,将统计结果分成组:,,,,,绘制成如图所示的频率分布直方图.(1)求直方图中的值;(2)求辆纯电动汽车续驶里程的中位数;(3)若从续驶里程在的车辆中随机抽取辆车,求其中恰有一辆车的续驶里程为的概率.19.已知分别为三个内角的对边长,且(1)求角的大小;(2)若,求面积的最大值.20.已知向量,.(Ⅰ)求;(Ⅱ)若向量与垂直,求的值.21.已知的内角所对的边分别为,且,.(1)若,求角的值;(2)若,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】

由已知可得||,根据数量积公式求解即可.【题目详解】||.故选A.【题目点拨】本题考查平面向量数量积的性质及运算,考查了利用数量积进行向量模的运算求解方法,属于基础题.2、D【解题分析】

由已知得,然后根据不等式的性质判断.【题目详解】由且,,由得,A错;由得,B错;由于可能为0,C错;由已知得,则,D正确.故选:D.【题目点拨】本题考查不等式的性质,掌握不等式性质是解题关键,特别是性质:不等式两同乘以一个正数,不等号方向不变,不等式两边同乘以一个负数,不等号方向改变.3、C【解题分析】

取的中点,连结,可证明平面平面,由于平面,可知平面.【题目详解】取的中点,连结,显然,因为平面,平面,所以平面,平面,又,故平面平面,又因为平面,所以平面.故选C.【题目点拨】本题考查了直线与平面的位置关系,考查了线面平行、面面平行的证明,属于基础题.4、A【解题分析】

依据立体几何有关定理及结论,逐个判断即可。【题目详解】A正确:利用“垂直于同一个平面的两条直线平行”及“两条直线有一条垂直于一个平面,则另一条也垂直于该平面”,若m⊥β且n⊥β ,则m//n,又n⊥α,所以m⊥αB错误:若m∥β, , β⊥α,则C错误:若m⊥n, n∥α,则m可能垂直于平面α,也可能平行于平面α,还可能在平面D错误:若m⊥n , n⊥β , β⊥α,则【题目点拨】本题主要考查立体几何中的定理和结论,意在考查学生几何定理掌握熟练程度。5、A【解题分析】

根据终边相同的角的的概念可得正确的选项.【题目详解】终边相同的角满足,故B、D错误,终边落在第一象限的角可能是负角,故C错误,相等的角的终边必定相同,故A正确.故选:A.【题目点拨】本题考查终边相同的角,注意终边相同时,有,本题属于基础题.6、B【解题分析】

数列为,则所以前n项和为.故选B7、C【解题分析】

根据同角三角函数的基本关系及两角和差的正弦公式计算可得.【题目详解】解:因为,.因为,所以.因为,,所以.所以.故选:【题目点拨】本题考查同角三角函数的基本关系,两角和差的正弦公式,属于中档题.8、D【解题分析】

先求得全是正面的概率,用减去这个概率求得至少出现一次反面的概率.【题目详解】基本事件的总数为,全是正面的的事件数为,故全是正面的概率为,所以至少出现一次反面的概率为,故选D.【题目点拨】本小题主要考查古典概型概率计算,考查正难则反的思想,属于基础题.9、A【解题分析】

利用作差比较法判断得解.【题目详解】①,∵,∴,故.②∵,∴,所以a>ab.综上,故选A.【题目点拨】本题主要考查作差比较法比较实数的大小,意在考查学生对该知识的理解掌握水平,属于基础题.10、D【解题分析】略二、填空题:本大题共6小题,每小题5分,共30分。11、6【解题分析】

利用分层抽样的定义求解.【题目详解】设从高一年级的学生中抽取x名,由分层抽样的知识可知,解得x=6.故答案为6.【题目点拨】本题主要考查分层抽样,意在考查学生对该知识的掌握水平和分析推理能力.12、8【解题分析】

设等差数列的公差为,则,所以,故答案为8.13、-1【解题分析】

由等差数列的结合,代入计算即可.【题目详解】己知是等差数列,是其前项和,所以,得,由等差中项得,所以.故答案为-1【题目点拨】本题考查了等差数列前项和公式和等差中项的应用,属于基础题.14、【解题分析】

可先求出一元二次方程的两根,即可得到不等式的解集.【题目详解】由于的两根分别为:,,因此不等式的解集是.【题目点拨】本题主要考查一元二次不等式的求解,难度不大.15、【解题分析】

由,,得的坐标,根据得,由向量数量积的坐标表示即可得结果.【题目详解】∵,,∴又∵,∴,即,所以,解得,故答案为.【题目点拨】本题主要考查了向量的坐标运算,两向量垂直与数量积的关系,属于基础题.16、【解题分析】

直接联立方程得到答案.【题目详解】联立方程解得即两直线的交点坐标为.故答案为【题目点拨】本题考查了两直线的交点,属于简单题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解题分析】

(1)根据,即可得解;(2)根据公式计算求解.【题目详解】(1)由题向量的夹角为60°,所以,,;(2),所以【题目点拨】此题考查平面向量数量积,根据定义计算两个向量的数量积,求向量的模长和根据数量积与模长关系求向量夹角.18、(1)(2)(3)【解题分析】

(1)利用小矩形的面积和为,求得值,即可求得答案;(2)中位数的计算方法为:把频率分布直方图分成两个面积相等部分的平行于轴的直线横坐标,即可求得答案;(3)据直方图求出续驶里程在和续驶里程在的车辆数,利用排列组合和概率公式求出其中恰有一辆车的续驶里程在的概率,即可求得答案.【题目详解】(1)由直方图可得:(2)根据中位数的计算方法为:把频率分布直方图分成两个面积相等部分的平行于轴的直线横坐标.直方图可得:可得:辆纯电动汽车续驶里程的中位数.(3)续驶里程在的车辆数为:续驶里程在第五组的车辆数为.从辆车中随机抽取辆车,共有中抽法,其中恰有一辆车的续驶里程在的抽法有种,其中恰有一辆车的续驶里程在的概率为.【题目点拨】本题考查根据条型统计图求数据的中位数和根据组合数求概率问题,解题关键是掌握条型统计图基础知识和概率的求法,考查了分析能力和计算能力,属于中档题.19、(1);(2).【解题分析】

(1)利用正弦定理、三角形内角和定理、两角和的正弦公式,特殊角的三角函数值,化简等式进行求解即可(2)根据余弦定理,结合三角形面积公式、重要不等式进行求解即可【题目详解】(1)由正弦定理可知:,,,所以可得:,;(2)由余弦定理可知:,由可知:,所以,所以面积的最大值为【题目点拨】本题考查了正弦定理、余弦定理、三角形面积公式,考查了重要不等式,考查了两角和的正弦公式,考查了数学运算能力.20、(Ⅰ)-1;(Ⅱ)【解题分析】

(Ⅰ)利用向量的数量积的坐标表示进行计算;(Ⅱ)由垂直关系,得到坐标间的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论